One proves that the steady-state solutions to Navier-Stokes equations with internal controllers are locally exponentially stabilizable by linear feedback controllers provided by a control problem associated with the linearized equation.
Mots-clés : Navier-Stokes system, Riccati equation, linearized system, steady-state solution, weak solution
@article{COCV_2003__9__197_0, author = {Barbu, Viorel}, title = {Feedback stabilization of {Navier-Stokes} equations}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {197--205}, publisher = {EDP-Sciences}, volume = {9}, year = {2003}, doi = {10.1051/cocv:2003009}, zbl = {1076.93037}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2003009/} }
TY - JOUR AU - Barbu, Viorel TI - Feedback stabilization of Navier-Stokes equations JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2003 SP - 197 EP - 205 VL - 9 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2003009/ DO - 10.1051/cocv:2003009 LA - en ID - COCV_2003__9__197_0 ER -
Barbu, Viorel. Feedback stabilization of Navier-Stokes equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 9 (2003), pp. 197-205. doi : 10.1051/cocv:2003009. http://www.numdam.org/articles/10.1051/cocv:2003009/
[1] On some control problems in fluid mechanics. Theoret. Comput. Fluid Dynam. 1 (1990) 303-325. | Zbl
and ,[2] Mathematical Methods in Optimization of Differential Systems. Kluwer, Dordrecht (1995). | MR | Zbl
,[3] Local controllability of Navier-Stokes equations. Adv. Differential Equations 6 (2001) 1443-1462. | Zbl
,[4] The time optimal control of Navier-Stokes equations. Systems & Control Lett. 30 (1997) 93-100. | Zbl
,[5] -control theory of fluid dynamics. Proc. Roy. Soc. London 454 (1998) 3009-3033. | MR | Zbl
and ,[6] Flow invariance preserving feedback controller for Navier-Stokes equations. J. Math. Anal. Appl. 255 (2001) 281-307. | Zbl
and ,[7] Optimal and robust control and estimation of linear path to transition. J. Fluid Mech. 365 (1998) 305-349. | MR | Zbl
and ,[8] Representation and Control of Infinite Dimensional Systems. Birkhäuser, Boston, Bassel, Berlin (1992). | MR | Zbl
, , and ,[9] Numerical criterion for the stabilization of steady states of the Navier-Stokes equations. Indiana Univ. Math. J. 50 (2001) 37-96. | Zbl
, and ,[10] Navier-Stokes Equations. University of Chicago Press, Chicago, London (1989). | Zbl
and ,[11] On the controllability for the 2-D incompresssible Navier-Stokes equations with the Navier slip boundary conditions. ESAIM: COCV 1 (1996) 33-75. | Numdam | Zbl
,[12] On the null asymptotic stabilization of the 2-D incompressible Euler equations in a simple connected domain. SIAM J. Control Optim. 37 (1999) 1874-1896. | MR | Zbl
,[13] Global exact controllability of the 2-D Navier-Stokes equations on a manifold without boundary. Russian J. Math. Phys. 4 (1996) 429-448. | Zbl
and ,[14] Local controllability of Navier-Stokes equations. ESAIM: COCV 3 (1998) 97-131. | Numdam | Zbl
,[15] On local controllability of Navier-Stokes equations. ESAIM: COCV 6 (2001) 49-97.
,[16] Control Theory for Partial Differential Equations: Continuous and Approximation Theories, Encyclopedia of Mathematics and its Applications. Cambridge University Press (2000). | Zbl
and ,[17] Navier-Stokes Equations and Nonlinear Functional Analysis. SIAM Philadelphia (1983). | Zbl
,Cité par Sources :