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FEEDBACK STABILIZATION OF NAVIER–STOKES EQUATIONS

Viorel Barbu1

Abstract. One proves that the steady-state solutions to Navier–Stokes equations with internal con-
trollers are locally exponentially stabilizable by linear feedback controllers provided by a LQ control
problem associated with the linearized equation.
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1. Introduction

Consider the controlled Navier–Stokes system with the non-slip Dirichlet boundary conditions

yt(x, t) − ν∆y(x, t) + (y · ∇)y(x, t) = m(x)u(x, t) + f0(x) +∇p(x, t), (x, t) ∈ Q
(∇ · y)(x, t) = 0, ∀ (x, t) ∈ Q = Ω×(0,∞)

y = 0, on Σ = ∂Ω×(0,∞)

y(x, 0) = y0(x), x ∈ Ω.

(1.1)

These equations govern the motion of viscous incompressible flows in a domain Ω of Rd, d = 2 or d = 3
where y = (y1, ..., yd) is the state, the velocity field u = (u1, u2, ..., ud) is the control input and p is the unknown
pressure. Here m is the characteristic function of an open subset ω of Ω, and f0, y0 ∈ (L2(Ω))d, ∇ · y0 = 0 are
given vector fields.

Denote by n the normal to ∂Ω and set

H = {y ∈ (L2(Ω))d, ∇ · y = 0, y · n = 0 on ∂Ω}, V = {y ∈ (H1
0 (Ω))d, ∇ · y = 0}·

Denote by P : (L2(Ω))d −→ H the Leray projector and set

b(y, z, w) =
d∑

i,j=1

∫
Ω

yiDizjwjdx. (1.2)

Define the operator B : V −→ V ′ by

(By,w) = b(y, y, w), ∀ y, w ∈ V. (1.3)
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Then we may rewrite equation (1.1) as

dy
dt

(t) + νAy(t) +By(t) = P (mu) + Pf0, t ∈ [0,∞)

y(0) = y0,
(1.1)′

where A ∈ L(V, V ′) (the Stokes operator) is defined by

(Ay,w) =
d∑

i=1

∫
Ω

∇yi · ∇widx, ∀ y, w ∈ V. (1.4)

Let (ye, pe) be a steady-state solution to (1.1), i.e.,

−ν∆ye + (ye · ∇)ye = ∇pe + f0(x) in Ω
∇ · ye = 0 in Ω
ye = 0 on ∂Ω.

(1.5)

Throughout this paper we shall assume that the boundary ∂Ω is a finite union of d−1 dimensional C∞-connected
manifolds diffeomorphic with Sr

d = {x ∈ Rd, |x| = r}.
It is well known that for d = 2, 3 always there is a steady-state solution and for small viscosity constant ν

this solution might be instable. However, by some recent results in [14, 15] (see also [3]) if (ye, pe) and y0 are
sufficiently smooth, for instance if

(ye, pe) ∈ ((H3(Ω))d) ∩ V )×H1(Ω), y0 ∈ (H2(Ω))d ∩ V (1.6)

and ‖y0 − ye‖(H2(Ω))d ≤ η is sufficiently small then for each T > 0 there are

u ∈ H1(0, T ; (L2(Ω))d), y ∈ L∞(0, T ; (H2(Ω))d ∩ V ) ∩H1(0, T ;H) (1.7)

and p ∈ L2(0, T ;H1(Ω)) satisfying (1.1) and such that y(x, T ) ≡ ye(x). (In 2-D similar exact controllability
results were previously obtained in [11,13].) In particular, this implies that there is a controller u which stabilizes
the steady-state solution ye.

Here we shall use a different approach to stabilization inspired by Liapunov stability theory for finite dimen-
sional systems. One must recall that a key element in stabilization of nonlinear ordinary differential systems is
the linear feedback controller stabilizing the linearized system, usually, provided by an algebraic Riccati equa-
tion associated with an infinite horizon LQ problem. However in the case of infinite dimensional systems with
unbounded nonlinearities, as is the case here, the situation is more complicated and our goal is to show (see
Th. 1 below) that this approach still works with an appropriate LQ problem. This will allow to solve the local
exponential stabilization problem for the Navier–Stokes using the solution of an appropriate algebraic Riccati
equation associated with the linearized Stokes equation. As seen below the technique is applicable to a larger
class of nonlinear evolution equations and in particular to parabolic semilinear equations.

For recent results on stabilization of fluid flows we refer to the works [1, 6, 7, 9, 12] and the references given
there.

Here and throughout in the sequel Hk(Ω) and H1(0, T ;X) (X is a Hilbert space) are usual Sobolev spaces
on Ω and (0, T ), respectively. We shall denote by the same symbol |·| the norm of H and of (L2(Ω))d. We shall
denote by ‖·‖ the norm of V and by (·, ·) the pairing between V , V ′ (the dual space of V ) and, respectively, the
scalar product of H. Finally |·|s is the norm of the Sobolev space (Hs(Ω))d.
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2. Stabilization of the linearized equation

Substituting y by y + ye and p by p + pe into equation (1.1) we are lead to the null stabilization of the
equation

yt − ν∆y + (y·∇)y + (ye·∇)y + (y·∇)ye = mu+∇p in Q
∇ · y = 0 in Q
y = 0 on Σ
y(x, 0) = y0(x)− ye(x) = y0(x), x ∈ Ω.

(2.1)

Equivalently,
dy
dt

(t) + νAy(t) +A0y(t) +By(t) = P (mu), t ≥ 0

y(0) = y0
(2.2)

where B,A are given by (1.3, 1.4) and A0 ∈ L(V,H) is defined by

(A0y, w) = b(ye, y, w) + b(y, ye, w), ∀w ∈ H. (2.3)

Consider the linearized system

dy
dt

(t) + νAy(t) +A0y(t) = P (mu)(t), t ≥ 0

y(0) = y0
(2.4)

and the corresponding LQ(linear quadratic) optimal control problem

ϕ(y0) = Min
{

1
2

∫ ∞

0

(∣∣∣A 3
4 y(t)

∣∣∣2 + |u(t)|2
)

dt; subject to (2.4)
}
· (2.5)

We shall denote by D(ϕ) the set of all y0 ∈ H such that ϕ(y0) < ∞ and note that for each y0 ∈ D(A
1
4 ) the

linear Stokes equation (2.4) is exactly null controllable on each interval [0, T ]. More precisely, there are u ∈
L2(0, T ; (L2(Ω))d), y ∈ L2(0, T ;D(A

3
4 )) satisfying (2.4) and such that y(T ) ≡ 0. Here is the argument. Let y0 ∈

D(A
1
4 ) and 0 < T0 < T. Then clearly equation (2.4) with u = 0 has a unique strong solution

y ∈ L2
(
0, T0;D

(
A

3
4

))
, t

1
2Ay ∈ L2(0, T0;H).

Indeed by (2.4) we get the following a priori estimates

d
dt

∣∣∣A 1
4 y
∣∣∣2 + 2ν

∣∣∣A 3
4 y
∣∣∣2 = −2b

(
ye, y, A

1
2 y
)
− 2b

(
y, ye, A

1
2 y
)

+ 2
(
mu,A

1
2 y
)

≤ C
∣∣∣A 1

2 y
∣∣∣(|ye|2‖y‖+ |u|), a.e. t > 0.

This yields ∣∣∣A 1
4 y(t)

∣∣∣2 +
∫ t

0

∣∣∣A 3
4 y
∣∣∣2ds ≤ C

(∫ t

0

|u|2ds+
∣∣∣A 1

4 y0
∣∣∣2) ·

Next if multiply (2.4) by tAy(t) and use the latter estimate we obtain after a similar calculation that

∫ t

0

s|Ay(s)|2ds ≤ C

(∫ t

0

|u|2ds+
∣∣∣A 1

4 y0
∣∣∣2)
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which implies the desired result by standard argument. Now, if multiply the equation by tA2y we find
that t|Ay(t)|2 ∈ C((0, T0] and therefore y(T0) ∈ (H2(Ω))d. Finally, by the controllability results established
in [14, 15] (see also Lem. 3.1 in [3]) we know that there is a solution (y, u) to (2.4) on (T0, T ) such that

u ∈ H1
(
T0, T ; (L2(Ω))d

)
, y ∈ L2(T0, T ;D(A)), y(T ) = 0.

In particular, this implies that ϕ(y0) <∞, ∀y0 ∈ D(A
1
4 ) and more precisely, we have

ϕ
(
y0
) ≤ C

∣∣∣A 1
4 y0
∣∣∣2, ∀y0 ∈ D

(
A

1
4

)
. (2.6)

Moreover, we have

ϕ(y0) ≥ C
∣∣∣A 1

4 y0
∣∣∣2. (2.7)

Indeed, it is easily seen that for each y0 ∈ D(ϕ) problem (2.5) has a unique solution (y∗, u∗) ∈ L2(R+;D(A
3
4 ))

×L2(R+; (L2(Ω))d). Moreover, as easily seen by (2.4), y∗ ∈ Cw(R+, D(A
1
4 )). (Here Cw denotes the space of

weakly continuous functions.) If multiply equation (2.4) where y = y∗, u = u∗ by A
1
2 y∗ and integrate on (0,∞)

we obtain

1
2

∣∣∣A 1
4 y0
∣∣∣2 ≤∫ ∞

0

(
ν
(
Ay∗, A

1
2 y∗
)

+
(
A0y

∗, A
1
2 y∗
)

+ |u∗|
∣∣∣A 1

2 y∗
∣∣∣) dt

≤ C

∫ ∞

0

(∣∣∣A 3
4 y∗
∣∣∣2 + |u∗|2

)
dt = Cϕ

(
y0
)

because (see e.g. [10, 17]) we have∣∣∣(A0y,A
1
2 y
)∣∣∣ ≤ ∣∣∣b(y, ye, A

1
2 y
)∣∣∣+ ∣∣∣b(ye, y, A

1
2 y
)∣∣∣ ≤ C‖y‖

∣∣∣A 1
2 y
∣∣∣|ye|2 ≤ C‖y‖2|ye|2.

By (2.7) we may infer therefore that D(ϕ) = D(A
1
4 ) = W. The space W is endowed with the graph norm |y|W =

|A 1
4 y|. Here and everywhere in the sequel As, s ∈ (0, 1), is the fractional power of the Stokes operator A and

As = A[s]As−[s] for s ≥ 1. We refer to [10] for definition and basic properties. Here we recall only that

V = D
(
A

1
2

)
, D(As) ⊂ (H2s)d ∩H, ∀s ≥ 0

and (Hm(Ω))d ∩ V ⊂ D
(
A

m
2
)

for all positive integers m.
Since the function ϕ is quadratic we may infer that there is a linear self-adjoint operator R : H → H with

the domain D(R) such that
1
2
(
Ry0, y0

)
= ϕ

(
y0
)
, ∀ y0 ∈ D(R) ⊂W.

Moreover, R ∈ L(W,W ′) and the latter equality extends to all of W.

Proposition 1. Let d = 2, 3. Then the optimal control u∗ is expressed as

u∗(t) = −mRy∗(t), ∀ t > 0. (2.8)

Moreover, V ⊂ D(R), i.e.,
|Ry| ≤ C‖y‖, ∀y ∈ V (2.9)

and there are ωi > 0, i = 1, 2 such that

ω1‖y‖2W ≤ (Ry, y) ≤ ω2‖y‖2W , ∀ y ∈W. (2.10)
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The operator R is a solution to the algebraic Riccati equation

(νAy +A0y,Ry) +
1
2
|mRy|2 =

1
2

∣∣∣A 3
4 y
∣∣∣2, ∀ y ∈ D(A). (2.11)

Proof. Estimate (2.10) follows by (2.6) and (2.7). Since the quadratic cost functional (2.5) is unbounded on H
the conclusions of Proposition 1 are not directly implied by the general theory of infinite dimensional LQ
control problems (see e.g. [8, 16]) and so it requires a direct treatment briefly presented below.

By the dynamic programming principle (see e.g. [2]) it follows that for each T > 0, (y∗, u∗) is the solution to
optimal control problem

Min

{
1
2

∫ T

0

(∣∣∣A 3
4 y(t)

∣∣∣2+|u(t)|2) dt+ ϕ(y(T )); (y, u) subject to (2.4)

}
· (2.5)′

Thus by the maximum principle we have that (see [2])

u∗(t) = mqT (t), ∀ t ∈ [0, T ) (2.12)

where qT ∈ L2(0, T ;H) ∩Cw([0, T ];V ′) is the solution to the adjoint equation

d
dt
qT − (νA +A0)∗qT = A

3
2 y∗, t ∈ (0, T )

qT (T ) = −Ry∗(T ).
(2.13)

(For existence in (2.13) we use the fact that qT (T ) ∈ W ′ ⊂ V ′ and apply the standard existence theory for
linear evolution equations.)

By (2.12) and the unique continuous property for the Stokes equation

qt−(νA+A0)∗q=0 in Q; q = 0 on Σ

(which is a consequence of the Carleman inequality established in [14, 15] for the Stokes equation) it follows
that qT =qT ′

on (0, T ) for 0 < T < T ′. Hence qT = q is independent of T and so (2.12, 2.13) extend to all
of R+. Moreover, we have

Ry0 = −qT (0). (2.14)

Indeed for all y0, z0 ∈ D
(
A

1
4

)
we have by (2.5)′ that

ϕ(y0)− ϕ(z0) ≤
∫ T

0

(
A

3
4 y∗(t), A

3
4 (y∗(t)− z∗(t)) + (u∗(t), u∗(t)− v∗(t))

)
dt

+ (Ry∗(T ), y∗(T )− z∗(T ))

where (z∗, v∗) is the optimal pair corresponding to z0. On the other hand, by (2.12) and (2.13) we see that

d
dt
(
qT (t), y∗(t)− z∗(t)

)
=
(
A

3
4 y∗(t), A

3
4 (y∗(t)− z∗(t)) + (u∗(t), u∗(t)− v∗(t))

)
.

Integrating on (0, T ) and substituting into the above inequality we obtain that

ϕ
(
y0
)− ϕ

(
z0
) ≤ − (qT (0), y0 − z0

)
which implies (2.14) as desired.
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By (2.12) we infer that
q(t) = −Ry∗(t), ∀ t ≥ 0 (2.15)

and this implies (2.8) as claimed.
By (2.4) we have also that

d
dt
‖y∗(t)‖2 + 2ν|Ay∗(t)|2 + 2b(ye, y

∗(t), Ay∗(t))

+ 2b(y∗(t), ye, Ay
∗(t)) ≤ 2|mq(t)||Ay∗(t)|, a.e. t ∈ (0, T ).

Since as noticed earlier
|b(ye, y, Ay)|+ |b(y, ye, Ay)| ≤ C|ye|2‖y‖|Ay|

we find the estimate

‖y∗(t)‖2 +
∫ t

0

|Ay∗(t)|2dt ≤ CT

∥∥y0
∥∥2
, ∀t ∈ (0, T ). (2.16)

On the other hand, coming back to equation (2.13) and substituting z = A−
1
2 q we obtain

d
dt
z − νAz −A−

1
2A∗0A

1
2 z = Ay∗. (2.17)

Noticing that

∣∣∣(A− 1
2A∗0A

1
2 z,Az

)∣∣∣ ≤ ∣∣∣b(ye, A
1
2 z,A

1
2 z
)∣∣∣+ ∣∣∣b(A 1

2 z, ye, A
1
2 z
)∣∣∣ ≤ C|Az|‖z‖|ye|2

and recalling that Ay∗ ∈ L2(0, T ;H) we see by (2.17) that z ∈ Cw([0, T );V ). Hence q ∈ C([0, T );H) and
so −q(0) = Ry0 ∈ H. Then (2.9) follows by the closed graph theorem.

Next by (2.5)′ we have

ϕ(y∗(t)) =
1
2

∫ ∞

t

(∣∣∣A 3
4 y∗
∣∣∣2 + |u∗|2

)
ds, ∀ t ≥ 0 (2.18)

and therefore (
Ry∗(t),

dy∗

dt
(t)
)

+
1
2

∣∣∣A 3
4 y∗(t)

∣∣∣2 +
1
2
|mRy∗(t)|2 = 0, a.e. t > 0.

Since |P (mRy)| ≤ C‖y‖, ∀y ∈ V we see that the operator νA+A0 + P (mR) with the domain D(A) generates
a C0− semigroup on H (this is just the flow y0 → y∗(t)). This implies that

Ay∗, A0y
∗, P (mRy∗) ∈ C([0,∞);H)

and in virtue of (2.18) and (2.8) this yields

−(Ry∗(t), νAy∗(t) + A0y
∗(t))− 1

2
|mRy∗(t)|2 +

1
2

∣∣∣A 3
4 y∗(t)

∣∣∣2 = 0, ∀ t ≥ 0

thereby completing the proof. �

Remark 1. It is easily seen that the equation (2.11) has a unique self-adjoint solution R satisfying condi-
tions (2.9) and (2.10). This is an immediate consequence of the fact that any such a solution stabilizes
system (2.4) via feedback law (2.8). The general problem of uniqueness in equation (2.11) with bounded right
hand side is studied in [8] but the arguments extend in our case too.



FEEDBACK STABILIZATION OF NAVIER–STOKES EQUATIONS 203

3. Stabilization of the Navier–Stokes equation

Theorem 1 below is the main result of this paper.

Theorem 1. Let d = 2, 3 and let R be the operator defined in Proposition 1. Let (ye, pe) ((H3(Ω))d∩V )×H1(Ω)
be a steady–state solution to equation (1.1). Then the feedback controller

u = −mR(y − ye) (3.1)

exponentially stabilizes ye in a neighbourhood V = {y0 ∈ W ; ‖y0 − ye‖W < ρ} of ye. More precisely, for each
y0 ∈ V there is a weak solution y ∈ L∞loc(R

+;H) ∩ L2
loc(R

+;V ) to closed loop system

dy
dt

+ νAy +By + P (mR(y − ye)) = Pf0, t > 0

y(0) = y0

(3.2)

such that ∫ ∞

0

∣∣∣A 3
4 (y(t)− ye)

∣∣∣2dt ≤ C‖y0 − ye‖2W
|y(t)− ye| ≤ Ce−γt‖y0 − ye‖W , ∀ y0 ∈ V

(3.3)

for some γ > 0.

Proof. As seen earlier we may reduce the problem to that of stability of the null solution to corresponding
closed loop system (2.2), i.e.,

dy
dt

+ νAy +A0y +By + P (mRy) = 0, t > 0

y(0) = y0.
(3.4)

We consider the approximating equation

dyN

dt
+ νAyN +A0yN +BNyN + P (mRyN) = 0,

yN (0) = y0,
(3.5)

where

BNy = By if ‖y‖ ≤ N, BNy =
N2

‖y‖2By if ‖y‖ > N.

We note that
(BNy −BNz, y − z) ≥ −ε‖y − z‖2 − CN,ε|y − z|2, ∀y, z ∈ V

and by (2.9) we have
|P (mRy)| ≤ C‖y‖, ∀y ∈ V.

Then arguing as in [4, 6] it follows that the operator AN = νA + A0 + BN + P (mR) with the domain D(A)
is m quasi-accretive in H (i.e., λI + AN is m-accretive in H for some λ > 0). Thus for each y0 ∈ D(A)
equation (3.5) has a unique solution yN ∈ W 1,∞

loc (R+;H) ∩ L∞loc(R
+;D(A)). (If y0 ∈ V then yN ∈ W 1,2

loc (R+;H)
∩L2

loc(R
N ;D(A)) ∩C(R+;V ).) Also the following estimate holds

|yN(t)|2 +
∫ t

0

(
‖y′N‖

4
3
V ′ + ‖yN‖2

)
ds ≤ CT , ∀ t ∈ (0, T ), (3.6)

where y′N = dyN

dt and CT is independent of N .
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This implies that there is a subsequence N →∞ such that on each finite interval (0, T ),

yN −→ y weak star in L∞(0, T ;H), weakly in L2(0, T ;V )

strongly in L2(0, T ;H)
(3.7)

where y ∈ L2
loc(R

+;V ) ∩ Cw(R+;H),
dy
dt

∈ L 3
4
loc(R

+;V ′) is a weak solution to equation (3.4). (See e.g. [10, 17]

for the definition of the weak solution.)
Now we multiply equation (3.5) by RyN and use equation (2.11) to obtain after some calculation that

d
dt

(RyN (t), yN (t)) + |mRyN(t)|2 +
∣∣∣A 3

4 yN (t)
∣∣∣2 = −2(BNyN (t), RyN (t)), a.e. t > 0. (3.8)

On the other hand, recalling that (see e.g. [10, 17])

|b(y, z, w)| ≤ C|y|m1
|z|m2+1|w|m3

,m1 +m2 +m3 ≥ d

2

it follows by Proposition 1 that

|(BNyN , RyN )| ≤ inf

(
1,

N2

‖yN‖2
)
|b(yN , yN , RyN)|

≤ C|yN |1|yN | 3
2
|RyN | ≤ C‖yN‖

∣∣∣A 3
4 yN

∣∣∣|RyN |

≤
∣∣∣A 3

4 yN

∣∣∣‖yN‖2 ≤ C
∣∣∣A 3

4 yN

∣∣∣2(RyN , yN)
1
2 (3.9)

because by interpolation we have

‖y‖2 ≤
∣∣∣A 3

4 y
∣∣∣∣∣∣A 1

4 y
∣∣∣ ≤ C

∣∣∣A 3
4 y
∣∣∣(Ry, y) 1

2 .

We set
E =

{
y0 ∈W ; (Ry0, y0) < ρ

} ·
Then by (3.8) and (3.9) we see that for ρ sufficiently small and independent of N and y0 ∈ E we have

d
dt

(RyN (t), yN (t)) +
1
2

∣∣∣A 3
4 yN (t)

∣∣∣2 ≤ 0, a.e. t > 0.

By (2.10) this yields
d
dt

(RyN (t), yN(t)) + γ(RyN(t), yN (t)) ≤ 0, a.e. t > 0

for some positive constant γ independent of N and

∫ ∞

0

∣∣∣A 3
4 yN (t)

∣∣∣2dt ≤ 2(Ry0, y0).

Then again using (2.10) this yields

|yN (t)| ≤ ‖yN(t)‖W ≤ C
∥∥y0
∥∥

W
e−γt, ∀ t ≥ 0
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for some γ > 0 and C > 0 independent of N. Then recalling that in virtue of (3.7) we may assume that {yN}
is strongly convergent in H a.e. on R+, letting N tend to +∞ it follows by (3.7) that

|y(t)| ≤ C
∥∥y0
∥∥

W
e−γt, ∀ t ≥ 0

and so (3.3) follows for V = E + ye. This completes the proof. �
We note that if d = 2 then the solution y to closed loop system (3.2) is a strong solution and unique for

each y0 ∈ V .
Remark 2. The same linearization technique can be used to solve the local H∞ problem for the Navier–Stokes
equation with exogeneous disturbances. This problem was solved in [5] via differential game approach.

Remark 3. It is readily seen that under conditions of Theorem 1 the feedback controller u = −ψ(mR(y− ye))
is asimptotically stable for all continuous mappings ψ : H → H such that

(ψ(z), z) ≥ 1 + δ

2
|z|2, ∀z ∈ H (3.10)

for some δ > 0. This follows as above by multiplying the closed loop equation (2.4) with the feedback control u =
−ψ(mRy) by Ry and using (2.11) and (3.10).

This can be seen as a robustness property of the feedback controller (3.1) with respect to static perturbations
in the input.
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