In this paper we study the lower semicontinuity problem for a supremal functional of the form with respect to the strong convergence in , furnishing a comparison with the analogous theory developed by Serrin for integrals. A sort of Mazur’s lemma for gradients of uniformly converging sequences is proved.
Mots-clés : supremal functionals, lower semicontinuity, level convexity, calculus of variations, Mazur's lemma
@article{COCV_2003__9__135_0, author = {Gori, Michele and Maggi, Francesco}, title = {On the lower semicontinuity of supremal functionals}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {135--143}, publisher = {EDP-Sciences}, volume = {9}, year = {2003}, doi = {10.1051/cocv:2003005}, mrnumber = {1957094}, zbl = {1066.49010}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2003005/} }
TY - JOUR AU - Gori, Michele AU - Maggi, Francesco TI - On the lower semicontinuity of supremal functionals JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2003 SP - 135 EP - 143 VL - 9 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2003005/ DO - 10.1051/cocv:2003005 LA - en ID - COCV_2003__9__135_0 ER -
%0 Journal Article %A Gori, Michele %A Maggi, Francesco %T On the lower semicontinuity of supremal functionals %J ESAIM: Control, Optimisation and Calculus of Variations %D 2003 %P 135-143 %V 9 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2003005/ %R 10.1051/cocv:2003005 %G en %F COCV_2003__9__135_0
Gori, Michele; Maggi, Francesco. On the lower semicontinuity of supremal functionals. ESAIM: Control, Optimisation and Calculus of Variations, Tome 9 (2003), pp. 135-143. doi : 10.1051/cocv:2003005. http://www.numdam.org/articles/10.1051/cocv:2003005/
[1] The class of functionals which can be represented by a supremum. J. Convex Anal. 9 (to appear). | MR | Zbl
, and ,[2] New lower semicontinuity results for integral functionals. Rend. Accad. Naz. Sci. XL 11 (1987) 1-42. | MR | Zbl
,[3] Minimization problems for the functional sup . Ark. Mat. 6 (1965) 33-53. | MR | Zbl
,[4] Extension of functions satisfying Lipschitz conditions. Ark. Mat. 6 (1967) 551-561. | MR | Zbl
,[5] Minimization problems for the functional sup II. Ark. Mat. 6 (1969) 409-431. | MR | Zbl
,[6] Minimization problems for the functional sup III. Ark. Mat. 7 (1969) 509-512. | MR | Zbl
,[7] Lower semicontinuity of functionals. Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001) 495-517. | EuDML | Numdam | MR | Zbl
, and ,[8] Calculus of variations in . Appl. Math. Optim. 35 (1997) 237-263. | MR | Zbl
and ,[9] Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. Longman, Harlow, Pitman Res. Notes Math. Ser. 207 (1989). | MR | Zbl
,[10] Some properties of -limits of integral functionals. Ann. Mat. Pura Appl. 122 (1979) 1-60. | MR | Zbl
and ,[11] Integral representation on of -limits of variational integrals. Manuscripta Math. 30 (1980) 387-416. | EuDML | MR | Zbl
,[12] Teoremi di semicontinuità nel calcolo delle variazioni. Istituto Nazionale di Alta Matematica, Roma (1968).
,[13] On the lower semicontinuity of certain integral functionals. Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Natur., Rend. 74 (1983) 274-282. | EuDML | MR | Zbl
, and ,[14] A counterexample for some lower semicontinuity results. Math. Z. 162 (1978) 241-243. | EuDML | MR | Zbl
,[15] Some remarks on lower semicontinuity. Indiana Univ. Math. J. 49 (2000) 617-635. | MR | Zbl
and ,[16] On lower semicontinuity and relaxation. Proc. Roy. Soc. Edinburgh Sect. A 131 (2001) 519-565. | MR | Zbl
and ,[17] On some sharp lower semicontinuity condition in . Differential Integral Equations (to appear). | MR | Zbl
, and ,[18] An extension of the Serrin's lower semicontinuity theorem. J. Convex Anal. 9 (2002) 1-28. | Zbl
and ,[19] On lower semicontinuity of integral functionals. SIAM J. Control Optim. 15 (1977) 521-538. | MR | Zbl
,[20] La méthode métrique en calcul des variations. Hermann, Paris (1941). | JFM | Zbl
,[21] On the definition and properties of certain variational integrals. Trans. Amer. Math. Soc. 101 (1961) 139-167. | MR | Zbl
,Cité par Sources :