An optimal control problem is studied, in which the state is required to remain in a compact set . A control feedback law is constructed which, for given , produces -optimal trajectories that satisfy the state constraint universally with respect to all initial conditions in . The construction relies upon a constraint removal technique which utilizes geometric properties of inner approximations of and a related trajectory tracking result. The control feedback is shown to possess a robustness property with respect to state measurement error.
Mots-clés : optimal control, state constraint, near-optimal control feedback, nonsmooth analysis
@article{COCV_2002__7__97_0, author = {Clarke, Francis H. and Rifford, Ludovic and Stern, R. J.}, title = {Feedback in state constrained optimal control}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {97--133}, publisher = {EDP-Sciences}, volume = {7}, year = {2002}, doi = {10.1051/cocv:2002005}, mrnumber = {1925023}, zbl = {1033.49004}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2002005/} }
TY - JOUR AU - Clarke, Francis H. AU - Rifford, Ludovic AU - Stern, R. J. TI - Feedback in state constrained optimal control JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 97 EP - 133 VL - 7 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2002005/ DO - 10.1051/cocv:2002005 LA - en ID - COCV_2002__7__97_0 ER -
%0 Journal Article %A Clarke, Francis H. %A Rifford, Ludovic %A Stern, R. J. %T Feedback in state constrained optimal control %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 97-133 %V 7 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2002005/ %R 10.1051/cocv:2002005 %G en %F COCV_2002__7__97_0
Clarke, Francis H.; Rifford, Ludovic; Stern, R. J. Feedback in state constrained optimal control. ESAIM: Control, Optimisation and Calculus of Variations, Tome 7 (2002), pp. 97-133. doi : 10.1051/cocv:2002005. http://www.numdam.org/articles/10.1051/cocv:2002005/
[1] Patchy vector fields and asymptotic stabilization. ESAIM: COCV 4 (1999) 445-471. | Numdam | MR | Zbl
and ,[2] On continuous evasion strategies in game theoretic problems on the encounter of motions. Prikl. Mat. Mekh. 34 (1970) 796-803. | MR | Zbl
and ,[3] On classes of strategies in differential games of evasion. Prikl. Mat. Mekh. 35 (1971) 385-392. | MR | Zbl
and ,[4] Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhäuser, Boston (1997). | Zbl
and ,[5] Optimal feedback controls. SIAM J. Control Optim. 27 (1989) 991-1006. | MR | Zbl
,[6] Some characterizations of optimal trajectories in control theory. SIAM J. Control Optim. 29 (1991) 1322-1347. | MR | Zbl
and ,[7] Hamilton-Jacobi equations with state constraints. Trans. Amer. Math. Soc. 318 (1990) 643-683. | Zbl
and ,[8] Optimization and Nonsmooth Analysis. Wiley-Interscience, New York (1983). Republished as Vol. 5 of Classics in Appl. Math. SIAM, Philadelphia (1990). | MR | Zbl
,[9] Methods of Dynamic and Nonsmooth Optimization, Vol. 57 of CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (1989). | MR | Zbl
,[10] Feedback stabilization and Lyapunov functions. SIAM J. Control Optim. 39 (2000) 25-48. | MR | Zbl
, , and ,[11] Asymptotic controllability implies control feedback stabilization. IEEE Trans. Automat. Control 42 (1997) 1394. | MR | Zbl
, , and ,[12] Proximal analysis and control feedback construction. Proc. Steklov Inst. Math. 226 (2000) 1-20. | MR
, and ,[13] Qualitative properties of trajectories of control systems: A survey. J. Dynam. Control Systems 1 (1995) 1-48. | MR | Zbl
, , and ,[14] Universal feedback strategies for differential games of pursuit. SIAM J. Control Optim. 35 (1997) 552-561. | MR | Zbl
, and ,[15] Universal positional control. Proc. Steklov Inst. Math. 224 (1999) 165-186. Preliminary version: Preprint CRM-2386. Univ. de Montréal (1994). | MR | Zbl
, and ,[16] Complements, approximations, smoothings and invariance properties. J. Convex Anal. 4 (1997) 189-219. | MR | Zbl
, and ,[17] Nonsmooth Analysis and Control Theory. Springer-Verlag, New York, Grad. Texts in Math. 178 (1998). | MR | Zbl
, , and ,[18] Proximal smoothness and the lower- property. J. Convex Anal. 2 (1995) 117-145. | MR | Zbl
, and ,[19] On nonconvex differential inclusions whose state is constrained in the closure of an open set. Applications to dynamic programming. Differential and Integral Equations 12 (1999) 471-497. | MR | Zbl
and ,[20] Filippov's and Filippov-Wazewski's theorems on closed domains. J. Differential Equations 161 (2000) 449-478. | Zbl
and ,[21] Suboptimal universal strategies in a game-theoretic time-optimality problem. Prikl. Mat. Mekh. 59 (1995) 707-713. | MR | Zbl
and ,[22] New concepts in nondifferentiable programming. Bull. Soc. Math. France 60 (1979) 57-85. | Numdam | Zbl
,[23] On -optimal controls for state constraint problems. Ann. Inst. H. Poincaré Anal. Linéaire 17 (2000) 473-502. | Numdam | MR | Zbl
and ,[24] Differential games. Approximate and formal models. Mat. Sb. (N.S.) 107 (1978) 541-571. | MR | Zbl
,[25] Extremal aiming and extremal displacement in a game-theoretical control. Problems Control Inform. Theory 13 (1984) 287-302. | MR | Zbl
,[26] Control of dynamical systems. Nauka, Moscow (1985).
,[27] Positional Differential Games. Nauka, Moscow (1974). French translation: Jeux Différentielles. Mir, Moscou (1979). | MR | Zbl
and ,[28] Game-Theoretical Control Problems. Springer-Verlag, New York (1988). | MR | Zbl
and ,[29] Optimal Control via Nonsmooth Analysis. CRM Proc. Lecture Notes Amer. Math. Soc. 2 (1993). | MR | Zbl
,[30] Universal near-optimal control feedbacks. J. Optim. Theory Appl. 107 (2000) 89-123. | MR | Zbl
and ,[31] Problèmes de Stabilisation en Théorie du Contrôle, Doctoral Thesis. Univ. Claude Bernard Lyon 1 (2000).
,[32] Stabilisation des systèmes globalement asymptotiquement commandables. C. R. Acad. Sci. Paris 330 (2000) 211-216. | MR | Zbl
,[33] Existence of Lipschitz and semiconcave control-Lyapunov functions. SIAM J. Control Optim. (to appear). | MR | Zbl
,[34] Clarke’s tangent cones and boundaries of closed sets in . Nonlinear Anal. 3 (1979) 145-154. | Zbl
,[35] Favorable classes of Lipschitz continuous functions in subgradient optimization, in Nondifferentiable Optimization, edited by E. Nurminski. Permagon Press, New York (1982). | MR
,[36] Construction of optimal control feedback controls. Systems Control Lett. 16 (1991) 357-357. | MR | Zbl
and ,[37] Optimal control problems with state-space constraints I. SIAM J. Control Optim. 24 (1986) 551-561. | Zbl
,[38] Mathematical Control Theory, 2nd Ed.. Springer-Verlag, New York, Texts in Appl. Math. 6 (1998). | MR | Zbl
,[39] Clock and insensitivity to small measurement errors. ESAIM: COCV 4 (1999) 537-557. | Numdam | MR | Zbl
,[40] Generalized Solutions of First Order PDE's. Birkhäuser, Boston (1995). | Zbl
,[41] Universal optimal strategies in positional differential games. Differential Equations 19 (1983) 1377-1382. | MR | Zbl
,[42] The maximum principle and the superdifferential of the value function. Problems Control Inform. Theory 18 (1989) 151-160. | MR | Zbl
,[43] On structure of optimal feedbacks to control problems, Preprints of the eleventh IFAC International Workshop, Control Applications of Optimization, edited by V. Zakharov (2000).
, ,Cité par Sources :