This paper investigates the optimal distribution of hard and soft material on elastic plates. In the class of isometric deformations stationary points of a Kirchhoff plate functional with incorporated material hardness function are investigated and a compliance cost functional is taken into account. Under symmetry assumptions on the material distribution and the load it is shown that cylindrical solutions are stationary points. Furthermore, it is demonstrated that the optimal design of cylindrically deforming, clamped rectangular plates is non trivial, i.e. with a material distribution which is not just depending on one axial direction on the plate. Analytical results are complemented with numerical optimization results using a suitable finite element discretization and a phase field description of the material phases. Finally, using numerical methods an outlook on the optimal design of non isometrically deforming plates and shells is given.
Mots-clés : Elastic plates and shells, isometries, shape optimization, phase-field model
@article{COCV_2020__26_1_A82_0, author = {Hornung, Peter and Rumpf, Martin and Simon, Stefan}, title = {On material optimisation for nonlinearly elastic plates and shells}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, publisher = {EDP-Sciences}, volume = {26}, year = {2020}, doi = {10.1051/cocv/2020053}, mrnumber = {4165921}, zbl = {1459.49028}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2020053/} }
TY - JOUR AU - Hornung, Peter AU - Rumpf, Martin AU - Simon, Stefan TI - On material optimisation for nonlinearly elastic plates and shells JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2020 VL - 26 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2020053/ DO - 10.1051/cocv/2020053 LA - en ID - COCV_2020__26_1_A82_0 ER -
%0 Journal Article %A Hornung, Peter %A Rumpf, Martin %A Simon, Stefan %T On material optimisation for nonlinearly elastic plates and shells %J ESAIM: Control, Optimisation and Calculus of Variations %D 2020 %V 26 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2020053/ %R 10.1051/cocv/2020053 %G en %F COCV_2020__26_1_A82_0
Hornung, Peter; Rumpf, Martin; Simon, Stefan. On material optimisation for nonlinearly elastic plates and shells. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 82. doi : 10.1051/cocv/2020053. http://www.numdam.org/articles/10.1051/cocv/2020053/
[1] Shape optimization by the homogenization method. Vol. 146 of Applied Mathematical Sciences. Springer-Verlag, New York (2002). | DOI | MR | Zbl
,[2] On the approximation and the optimization of plates. Numer. Funct. Anal. Optim. 21 (2000) 337–354. | DOI | MR | Zbl
, , and ,[3] Approximation of large bending isometries with discrete Kirchhoff triangles. SIAM J. Numer. Anal. 51 (2013) 516–525. | DOI | MR | Zbl
,[4] Numerical methods for nonlinear partial differential equations. Vol. 47 of Springer Series in Computational Mathematics. Springer, Cham (2015). | DOI | MR | Zbl
,[5] A study of three-node triangular plate bending elements. Int. J. Numer. Methods Eng. 15 (1980) 1771–1812. | DOI | Zbl
, and ,[6] Crumpled paper. Proc. Roy. Soc. Lond.. Series A: Math. Phys. Eng. Sci. 453 (1997) 729–755. | DOI | MR | Zbl
and ,[7] Classical solutions to the Dirichlet problem for Willmore surfaces of revolution. Adv. Calc. Variat. 1 (2008) 379–397. | MR | Zbl
, and ,[8] An optimal shape design problem for plates. SIAM J. Numer. Anal. 55 (2017) 109–130. | DOI | MR | Zbl
, and ,[9] The Föpple-von kömö plate theory as a low energy gamma limit of nonlinear elasticity. Max-Planck-Institut Mathematik, Leipzig 33 (2002). | MR | Zbl
, and ,[10] A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. 55 (2002) 1461–1506. | DOI | MR | Zbl
, and ,[11] On spherical image maps whose Jacobians do not change sign. Am. J. Math. 81 (1959) 901–920. | DOI | MR | Zbl
and ,[12] Finite Element Approximation for Optimal Shape, Material and Topology Design, 2nd edn. Wiley (1996). | MR | Zbl
and ,[13] Time-discrete geodesics in the space of shells. Comput. Graph. Forum 31 (2012) 1755–1764. | DOI
, , and ,[14] Approximation of flat isometric immersions by smooth ones. Arch. Ratl. Mech. Anal. 199 (2011) 1015–1067. | DOI | MR | Zbl
,[15] Fine level set structure of flat isometric immersions. Arch. Ratl. Mech. Anal. 199 (2011) 943–1014. | DOI | MR | Zbl
,[16] Stationary points of nonlinear plate theories. J. Funct. Anal. 273 (2017) 946–983. | DOI | MR | Zbl
,[17] Continuation of infinitesimal bendings on developable surfaces and equilibrium equations for nonlinear bending theory of plates. Commun. Part. Differ. Equ. 38 (2013) 1368–1408. | DOI | MR | Zbl
,[18] Material optimization for nonlinearly elastic planar beams. ESAIM: COCV 25 (2019) 11. | Numdam | MR | Zbl
, and ,[19] Geometry and rigidity of microstructures. Universität Leipzig (2001). | Zbl
,[20] The space of inextensional displacements for a partially clamped linearly elastic shell with an elliptic middle surface. J. Elasticity 51 (1998) 127–144. | DOI | MR | Zbl
and ,[21] Un esempio di -convergenza. Boll. Un.Mat. Ital. B 14 (1977) 285–299. | MR | Zbl
and ,[22] On the Sobolev space of isometric immersions. J. Differ. Geom. 66 (2004) 47–69. | DOI | MR | Zbl
,[23] A phase-field model for compliance shape optimization in nonlinear elasticity. ESAIM: COCV 18 (2012) 229–258. | Numdam | MR | Zbl
, and ,[24] Extrinsic geometry of convex surfaces. Translated from the Russian by Israel Program for Scientific Translations, Translations of Mathematical Monographs, Vol. 35. American Mathematical Society, Providence, R.I. (1973). | DOI | MR | Zbl
,[25] A duality approach in the optimization of beams and plates. SIAM J. Control Optim. 37 (1999) 486–501. | DOI | MR | Zbl
and ,[26] Verallgemeinerte analytische Funktionen. Herausgegeben von Wolfgang Schmidt. Akademie-Verlag, Berlin (1963). | MR | Zbl
,[27] On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Progr. 106 (2006) 25–57. | DOI | MR | Zbl
and ,Cité par Sources :