On material optimisation for nonlinearly elastic plates and shells
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 82.

This paper investigates the optimal distribution of hard and soft material on elastic plates. In the class of isometric deformations stationary points of a Kirchhoff plate functional with incorporated material hardness function are investigated and a compliance cost functional is taken into account. Under symmetry assumptions on the material distribution and the load it is shown that cylindrical solutions are stationary points. Furthermore, it is demonstrated that the optimal design of cylindrically deforming, clamped rectangular plates is non trivial, i.e. with a material distribution which is not just depending on one axial direction on the plate. Analytical results are complemented with numerical optimization results using a suitable finite element discretization and a phase field description of the material phases. Finally, using numerical methods an outlook on the optimal design of non isometrically deforming plates and shells is given.

DOI : 10.1051/cocv/2020053
Classification : 49K15, 49Q10, 74P05, 74S05
Mots-clés : Elastic plates and shells, isometries, shape optimization, phase-field model
@article{COCV_2020__26_1_A82_0,
     author = {Hornung, Peter and Rumpf, Martin and Simon, Stefan},
     title = {On material optimisation for nonlinearly elastic plates and shells},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2020053},
     mrnumber = {4165921},
     zbl = {1459.49028},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2020053/}
}
TY  - JOUR
AU  - Hornung, Peter
AU  - Rumpf, Martin
AU  - Simon, Stefan
TI  - On material optimisation for nonlinearly elastic plates and shells
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2020053/
DO  - 10.1051/cocv/2020053
LA  - en
ID  - COCV_2020__26_1_A82_0
ER  - 
%0 Journal Article
%A Hornung, Peter
%A Rumpf, Martin
%A Simon, Stefan
%T On material optimisation for nonlinearly elastic plates and shells
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2020053/
%R 10.1051/cocv/2020053
%G en
%F COCV_2020__26_1_A82_0
Hornung, Peter; Rumpf, Martin; Simon, Stefan. On material optimisation for nonlinearly elastic plates and shells. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 82. doi : 10.1051/cocv/2020053. http://www.numdam.org/articles/10.1051/cocv/2020053/

[1] G. Allaire, Shape optimization by the homogenization method. Vol. 146 of Applied Mathematical Sciences. Springer-Verlag, New York (2002). | DOI | MR | Zbl

[2] V. Arnautu, H. Langmach, J. Sprekels and D. Tiba, On the approximation and the optimization of plates. Numer. Funct. Anal. Optim. 21 (2000) 337–354. | DOI | MR | Zbl

[3] S. Bartels, Approximation of large bending isometries with discrete Kirchhoff triangles. SIAM J. Numer. Anal. 51 (2013) 516–525. | DOI | MR | Zbl

[4] S. Bartels, Numerical methods for nonlinear partial differential equations. Vol. 47 of Springer Series in Computational Mathematics. Springer, Cham (2015). | DOI | MR | Zbl

[5] J.-L. Batoz, K.-J. Bathe and L.-W. Ho, A study of three-node triangular plate bending elements. Int. J. Numer. Methods Eng. 15 (1980) 1771–1812. | DOI | Zbl

[6] M. Ben Amar and Y. Pomeau, Crumpled paper. Proc. Roy. Soc. Lond.. Series A: Math. Phys. Eng. Sci. 453 (1997) 729–755. | DOI | MR | Zbl

[7] A. Dall’Acqua, K. Deckelnick and H.-C. Grunau, Classical solutions to the Dirichlet problem for Willmore surfaces of revolution. Adv. Calc. Variat. 1 (2008) 379–397. | MR | Zbl

[8] K. Deckelnick, M. Hinze and T. Jordan, An optimal shape design problem for plates. SIAM J. Numer. Anal. 55 (2017) 109–130. | DOI | MR | Zbl

[9] G. Friesecke, R. James and S. Mueller, The Föpple-von kömö plate theory as a low energy gamma limit of nonlinear elasticity. Max-Planck-Institut Mathematik, Leipzig 33 (2002). | MR | Zbl

[10] G. Friesecke, R.D. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. 55 (2002) 1461–1506. | DOI | MR | Zbl

[11] P. Hartman and L. Nirenberg, On spherical image maps whose Jacobians do not change sign. Am. J. Math. 81 (1959) 901–920. | DOI | MR | Zbl

[12] J. Haslinger and P. Neittaanmäki, Finite Element Approximation for Optimal Shape, Material and Topology Design, 2nd edn. Wiley (1996). | MR | Zbl

[13] B. Heeren, M. Rumpf, M. Wardetzky and B. Wirth, Time-discrete geodesics in the space of shells. Comput. Graph. Forum 31 (2012) 1755–1764. | DOI

[14] P. Hornung, Approximation of flat W 2 , 2 isometric immersions by smooth ones. Arch. Ratl. Mech. Anal. 199 (2011) 1015–1067. | DOI | MR | Zbl

[15] P. Hornung, Fine level set structure of flat isometric immersions. Arch. Ratl. Mech. Anal. 199 (2011) 943–1014. | DOI | MR | Zbl

[16] P. Hornung, Stationary points of nonlinear plate theories. J. Funct. Anal. 273 (2017) 946–983. | DOI | MR | Zbl

[17] P. Hornung, Continuation of infinitesimal bendings on developable surfaces and equilibrium equations for nonlinear bending theory of plates. Commun. Part. Differ. Equ. 38 (2013) 1368–1408. | DOI | MR | Zbl

[18] P. Hornung, M. Rumpf and S. Simon, Material optimization for nonlinearly elastic planar beams. ESAIM: COCV 25 (2019) 11. | Numdam | MR | Zbl

[19] B. Kirchheim, Geometry and rigidity of microstructures. Universität Leipzig (2001). | Zbl

[20] V. Lods and C. Mardare, The space of inextensional displacements for a partially clamped linearly elastic shell with an elliptic middle surface. J. Elasticity 51 (1998) 127–144. | DOI | MR | Zbl

[21] L. Modica and S. Mortola, Un esempio di Γ - -convergenza. Boll. Un.Mat. Ital. B 14 (1977) 285–299. | MR | Zbl

[22] M.R. Pakzad, On the Sobolev space of isometric immersions. J. Differ. Geom. 66 (2004) 47–69. | DOI | MR | Zbl

[23] P. Penzler, M. Rumpf and B. Wirth, A phase-field model for compliance shape optimization in nonlinear elasticity. ESAIM: COCV 18 (2012) 229–258. | Numdam | MR | Zbl

[24] A.V. Pogorelov, Extrinsic geometry of convex surfaces. Translated from the Russian by Israel Program for Scientific Translations, Translations of Mathematical Monographs, Vol. 35. American Mathematical Society, Providence, R.I. (1973). | DOI | MR | Zbl

[25] J. Sprekels and D. Tiba, A duality approach in the optimization of beams and plates. SIAM J. Control Optim. 37 (1999) 486–501. | DOI | MR | Zbl

[26] I.N. Vekua, Verallgemeinerte analytische Funktionen. Herausgegeben von Wolfgang Schmidt. Akademie-Verlag, Berlin (1963). | MR | Zbl

[27] A. Wächter and L.T. Biegler, On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Progr. 106 (2006) 25–57. | DOI | MR | Zbl

Cité par Sources :