We consider the problem of an optimal distribution of soft and hard material for nonlinearly elastic planar beams. We prove that under constant vertical load the optimal distribution involves no microstructure and is ordered, and we provide numerical simulations confirming and extending this observation.
Accepté le :
DOI : 10.1051/cocv/2017081
Mots-clés : Shape optimization, nonlinear elasticity, phase-field model
@article{COCV_2019__25__A11_0, author = {Hornung, Peter and Rumpf, Martin and Simon, Stefan}, title = {Material optimization for nonlinearly elastic planar beams}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, publisher = {EDP-Sciences}, volume = {25}, year = {2019}, doi = {10.1051/cocv/2017081}, zbl = {1444.74025}, mrnumber = {3944104}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2017081/} }
TY - JOUR AU - Hornung, Peter AU - Rumpf, Martin AU - Simon, Stefan TI - Material optimization for nonlinearly elastic planar beams JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2019 VL - 25 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2017081/ DO - 10.1051/cocv/2017081 LA - en ID - COCV_2019__25__A11_0 ER -
%0 Journal Article %A Hornung, Peter %A Rumpf, Martin %A Simon, Stefan %T Material optimization for nonlinearly elastic planar beams %J ESAIM: Control, Optimisation and Calculus of Variations %D 2019 %V 25 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2017081/ %R 10.1051/cocv/2017081 %G en %F COCV_2019__25__A11_0
Hornung, Peter; Rumpf, Martin; Simon, Stefan. Material optimization for nonlinearly elastic planar beams. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 11. doi : 10.1051/cocv/2017081. http://www.numdam.org/articles/10.1051/cocv/2017081/
[1] Shape Optimization by the Homogenization Method. Vol. 146 of Applied Mathematical Sciences. Springer-Verlag, New York (2002). | DOI | MR | Zbl
,[2] 3D-2D asymptotic analysis of an optimal design problem for thin films. J. Reine Angew. Math. 505 (1998) 173–202. | DOI | MR | Zbl
and ,[3] A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. 55 (2002) 1461–1506. | DOI | MR | Zbl
, and ,[4] Optimization with PDE Constraints. Vol. 23 of Mathematical Modelling: Theory and Applications. Springer, New York (2009). | MR | Zbl
, , , and ,[5] Euler–Lagrange equations for variational problems on space curves. Phys. Rev. E 81 (2010) 066603. | DOI | MR
,[6] General Homogenization of Bending-Torsion Theory for Inextensible Rods from 3D Elasticity. Preprint: (2014). | arXiv | MR
and ,[7] Un esempio di Γ−-convergenza. Boll. Un. Mat. Ital. B (5) 14 (1977) 285–299. | MR | Zbl
and ,[8] A phase-field model for compliance shape optimization in nonlinear elasticity. ESAIM: COCV 18 (2012) 229–258. | Numdam | MR | Zbl
, and ,[9] Gewöhnliche Differentialgleichungen: Eine Einführung [An Introduction], 5th edn. Springer-Lehrbuch [ Springer Textbook]. Springer-Verlag, Berlin (1993). | DOI | MR | Zbl
,Cité par Sources :