Material optimization for nonlinearly elastic planar beams
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 11.

We consider the problem of an optimal distribution of soft and hard material for nonlinearly elastic planar beams. We prove that under constant vertical load the optimal distribution involves no microstructure and is ordered, and we provide numerical simulations confirming and extending this observation.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2017081
Classification : 49K15, 49Q10, 74P05, 74S05
Mots-clés : Shape optimization, nonlinear elasticity, phase-field model
Hornung, Peter 1 ; Rumpf, Martin 1 ; Simon, Stefan 1

1
@article{COCV_2019__25__A11_0,
     author = {Hornung, Peter and Rumpf, Martin and Simon, Stefan},
     title = {Material optimization for nonlinearly elastic planar beams},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2017081},
     zbl = {1444.74025},
     mrnumber = {3944104},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2017081/}
}
TY  - JOUR
AU  - Hornung, Peter
AU  - Rumpf, Martin
AU  - Simon, Stefan
TI  - Material optimization for nonlinearly elastic planar beams
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2017081/
DO  - 10.1051/cocv/2017081
LA  - en
ID  - COCV_2019__25__A11_0
ER  - 
%0 Journal Article
%A Hornung, Peter
%A Rumpf, Martin
%A Simon, Stefan
%T Material optimization for nonlinearly elastic planar beams
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2017081/
%R 10.1051/cocv/2017081
%G en
%F COCV_2019__25__A11_0
Hornung, Peter; Rumpf, Martin; Simon, Stefan. Material optimization for nonlinearly elastic planar beams. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 11. doi : 10.1051/cocv/2017081. http://www.numdam.org/articles/10.1051/cocv/2017081/

[1] G. Allaire, Shape Optimization by the Homogenization Method. Vol. 146 of Applied Mathematical Sciences. Springer-Verlag, New York (2002). | DOI | MR | Zbl

[2] I. Fonseca and G. Francfort, 3D-2D asymptotic analysis of an optimal design problem for thin films. J. Reine Angew. Math. 505 (1998) 173–202. | DOI | MR | Zbl

[3] G. Friesecke, R.D. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. 55 (2002) 1461–1506. | DOI | MR | Zbl

[4] M. Hinze, R. Pinnau, M. Ulbrich, and S.Ulbrich, Optimization with PDE Constraints. Vol. 23 of Mathematical Modelling: Theory and Applications. Springer, New York (2009). | MR | Zbl

[5] P. Hornung, Euler–Lagrange equations for variational problems on space curves. Phys. Rev. E 81 (2010) 066603. | DOI | MR

[6] M. Marohnić and I. Velčić, General Homogenization of Bending-Torsion Theory for Inextensible Rods from 3D Elasticity. Preprint: (2014). | arXiv | MR

[7] L. Modica and S. Mortola, Un esempio di Γ-convergenza. Boll. Un. Mat. Ital. B (5) 14 (1977) 285–299. | MR | Zbl

[8] P. Penzler, M. Rumpf and B. Wirth, A phase-field model for compliance shape optimization in nonlinear elasticity. ESAIM: COCV 18 (2012) 229–258. | Numdam | MR | Zbl

[9] W. Walter, Gewöhnliche Differentialgleichungen: Eine Einführung [An Introduction], 5th edn. Springer-Lehrbuch [ Springer Textbook]. Springer-Verlag, Berlin (1993). | DOI | MR | Zbl

Cité par Sources :