Null controllability of a coupled degenerate system with the first and zero order terms by a single control
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 107.

This paper concerns the null controllability of a system of m linear degenerate parabolic equations with coupling terms of first and zero order, and only one control force localized in some arbitrary nonempty open subset ω of Ω. The key ingredient for proving the null controllability is to obtain the observability inequality for the corresponding adjoint system. Due to the degeneracy, we transfer to study an approximate nondegenerate adjoint system. In order to deal with the coupling first order terms, we first prove a new Carleman estimate for a degenerate parabolic equation in Sobolev spaces of negative order. Based on this Carleman estimate, we obtain a uniform Carleman estimate and then an observation inequality for this approximate adjoint system.

DOI : 10.1051/cocv/2020042
Classification : 35L05, 35L10, 35R09, 35R30
Mots-clés : Null controllability, degenerate parabolic system, Carleman estimate, observation inequality
@article{COCV_2020__26_1_A107_0,
     author = {Wu, Bin and Chen, Qun and Wang, Tingchun and Wang, Zewen},
     title = {Null controllability of a coupled degenerate system with the first and zero order terms by a single control},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2020042},
     mrnumber = {4185052},
     zbl = {1459.35240},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2020042/}
}
TY  - JOUR
AU  - Wu, Bin
AU  - Chen, Qun
AU  - Wang, Tingchun
AU  - Wang, Zewen
TI  - Null controllability of a coupled degenerate system with the first and zero order terms by a single control
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2020042/
DO  - 10.1051/cocv/2020042
LA  - en
ID  - COCV_2020__26_1_A107_0
ER  - 
%0 Journal Article
%A Wu, Bin
%A Chen, Qun
%A Wang, Tingchun
%A Wang, Zewen
%T Null controllability of a coupled degenerate system with the first and zero order terms by a single control
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2020042/
%R 10.1051/cocv/2020042
%G en
%F COCV_2020__26_1_A107_0
Wu, Bin; Chen, Qun; Wang, Tingchun; Wang, Zewen. Null controllability of a coupled degenerate system with the first and zero order terms by a single control. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 107. doi : 10.1051/cocv/2020042. http://www.numdam.org/articles/10.1051/cocv/2020042/

[1] E.M. Ait Benhassi, F. Ammar Khodja, A. Hajjaj and L. Maniar, Null controllability of degenerate parabolic cascade systems. Portugal. Math. 68 (2011) 345–367. | DOI | MR | Zbl

[2] E.M. Ait Benhassi, F. Ammar Khodja, A. Hajjaj and L. Maniar, Carleman Estimates and null controllability of coupled degenerate systems. Evol. Equ. Control Theory 2 (2013) 441–459. | DOI | MR | Zbl

[3] E.M. Ait Benhassi, M. Fadili and L. Maniar, On Algebraic condition for null controllability of some coupled degenerate systems. Preprint (2017). | arXiv | MR | Zbl

[4] F. Alabau-Boussouira, P. Cannarsa and G. Fragnelli, Carleman estimates for degenerate parabolic operators with applications to null controllability. J. Evol. Equ. 6 (2006) 161–204. | DOI | MR | Zbl

[5] F. Ammar Khodja, A. Benabdellah and C. Dupaix, Null-controllability for some reaction- diffusion systems with one control force. J. Math. Anal. Appl. 320 (2006) 928–943. | DOI | MR | Zbl

[6] A. Bukhgeim and M.V. Klibanov, Uniqueness in the large of a class of multidimensional inverse problems. Sov. Math. Dokl. 17 (1981) 244–247. | MR | Zbl

[7] P. Cannarsa and L. De Teresa, Controllability of 1-D coupled degenerate parabolic equations. Electron. J. Differ. Equ. 2009 (2009) 1–21. | MR | Zbl

[8] P. Cannarsa, P. Martinez and J. Vancostenoble, Null controllability of degenerate heat equations. Adv. Differ. Equ. 10 (2005) 153–190. | MR | Zbl

[9] P. Cannarsa, P. Martinez and J. Vancostenoble, Carleman estimates for a class of degenerate parabolic operators. SIAM J. Control Optim. 47 (2008) 1–19. | DOI | MR | Zbl

[10] P. Cannarsa, P. Martinez and J. Vancostenoble, Carleman estimates and null controllability for boundary-degenerate parabolic operators. CR Math. 347 (2009) 147–152. | MR | Zbl

[11] R. Du and F. Xu, Null Controllability of a Coupled Degenerate System with the First Order Terms. J. Dyn. Control Syst. 24 (2018) 83–92. | DOI | MR | Zbl

[12] M. Duprez and P. Lissy, Indirect controllability of some linear parabolic systems of m equations with m - 1 controls involving coupling terms of zero or first order. J. Math. Pures Appl. 106 (2016) 905–934. | DOI | MR | Zbl

[13] M. Fadili and L. Maniar, Null controllability of n -coupled degenerate parabolic systems with m -controls. J. Evol. Equ. 17 (2017) 1311–1340. | DOI | MR | Zbl

[14] E. Fernandez-Cara, M. Gonzalez-Burgos and L. De Teresa, Controllability of linear and semilinear non-diagonalizable parabolic systems. ESAIM: COCV 21 (2015) 1178–1204. | Numdam | MR | Zbl

[15] M. González-Burgos and R. Pérez-Garca, Controllability of some coupled parabolic systems by one control force. C. R. Math. 340 (2005) 125–130. | DOI | MR | Zbl

[16] M. González-Burgos and R. Pérez-Garcia, Controllability results for some nonlinear coupled parabolic systems by one control force. Asymptot. Anal. 46 (2006) 123–162. | MR | Zbl

[17] M. González-Burgos and L. De Teresa, Controllability results for cascade systems of m coupled parabolic PDEs by one control force. Port. Math. 67 (2010) 91–113. | DOI | MR | Zbl

[18] O.Y. Imanuvilov, Controllability of parabolic equations. Sbornik Math. 186 (1995) 879–900. | DOI | MR | Zbl

[19] O.Y. Imanuvilov and M. Yamamoto, Carleman estimate for a parabolic equation in a Sobolev space of negative order and its applications, in Control of Nonlinear Distributed Parameter Systems, Vol. 218 of Lecture Notes in Pure and Applied Mathenatics. Dekker, New York (2001) 113–137. | MR | Zbl

[20] O.Y. Imanuvilov and M. Yamamoto, Carleman estimates for the non-stationary Lemé system and application to an inverse problem ESAIM: COCV 11 (2005) 1–56. | Numdam | MR | Zbl

[21] V. Isakov, Inverse Problems for Partial Differential Equations. Springer-Verlag, Berlin (1998). | DOI | MR | Zbl

[22] V. Isakov and N. Kim, Carleman estimates with second large parameter and applications to elasticity with residual stress. Appl. Math. 35 (2008) 447–465. | MR | Zbl

[23] M.V. Klibanov, Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems. J. Inverse Ill-Posed Prob. 21 (2013) 477–560. | DOI | MR | Zbl

[24] M.V. Klibanov and A. Timonov, Carleman Estimates for Coefficient Inverse Problems and Numerical Applications, VSP, Utrecht (2004). | DOI | MR | Zbl

[25] X. Liu, H. Gao and P. Lin, Null controllability of a cascade system of degenerate parabolic equations. Acta Math. Sci. Ser. A Chin. Ed. 28 (2008) 985–996. | MR | Zbl

[26] V.G. Romanov and M. Yamamoto, Recovering a Lamé kernel in viscoelastic equation by a single boundary measurement. Appl. Anal. 89 (2010) 377–390. | DOI | MR | Zbl

[27] J.L. Rousseau and G. Lebeau, On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations. ESAIM: COCV 18 (2012) 712–747. | Numdam | MR | Zbl

[28] J.C. Saut and B. Scheurer, Unique continuation for some evolution equations. J. Differ. Equ. 66 (1987) 118–139. | DOI | MR | Zbl

[29] S. Tang and X. Zhang, Null controllability for forward and backward stochastic parabolic equations. SIAM J. Control Optim. 48 (2009) 2191–2216. | DOI | MR | Zbl

[30] C. Wang and R. Du, Carleman estimates and null controllability for a class of degenerate parabolic equations with convection terms. SIAM J. Control Optim. 52 (2014) 1457–1480. | DOI | MR | Zbl

[31] B. Wu and J. Liu, Determination of an unknown source for a thermoelastic system with a memory effect. Inverse Probl. 28 (2012) 095012. | DOI | MR | Zbl

[32] B. Wu, L. Yan, Y. Gao and Q. Chen, Carleman estimate for a linearized bidomain model in electrocardiology and its applications. Nonlinear Differ. Equ. Appl. 25 (2018) 4. | DOI | MR | Zbl

[33] B. Wu, Q. Chen, J. Yu and Z. Wang, A coefficient identification problem for a mathematical model related to ductal carcinoma in situ. Stud. Appl. Math. 143 (2019) 356–372. | DOI | MR | Zbl

[34] M. Yamamoto, Carleman estimates for parabolic equations and applications. Inverse Probl. 25 (2009) 123013. | DOI | MR | Zbl

Cité par Sources :