Carleman estimates for the non-stationary Lamé system and the application to an inverse problem
ESAIM: Control, Optimisation and Calculus of Variations, Tome 11 (2005) no. 1, pp. 1-56.

In this paper, we establish Carleman estimates for the two dimensional isotropic non-stationary Lamé system with the zero Dirichlet boundary conditions. Using this estimate, we prove the uniqueness and the stability in determining spatially varying density and two Lamé coefficients by a single measurement of solution over (0,T)×ω, where T>0 is a sufficiently large time interval and a subdomain ω satisfies a non-trapping condition.

DOI : 10.1051/cocv:2004030
Classification : 35B60, 35R25, 35R30, 73C02
Mots-clés : Carleman estimate, Lamé system, inverse problem
@article{COCV_2005__11_1_1_0,
     author = {Imanuvilov, Oleg Yu. and Yamamoto, Masahiro},
     title = {Carleman estimates for the non-stationary {Lam\'e} system and the application to an inverse problem},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1--56},
     publisher = {EDP-Sciences},
     volume = {11},
     number = {1},
     year = {2005},
     doi = {10.1051/cocv:2004030},
     mrnumber = {2110612},
     zbl = {1089.35086},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv:2004030/}
}
TY  - JOUR
AU  - Imanuvilov, Oleg Yu.
AU  - Yamamoto, Masahiro
TI  - Carleman estimates for the non-stationary Lamé system and the application to an inverse problem
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2005
SP  - 1
EP  - 56
VL  - 11
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv:2004030/
DO  - 10.1051/cocv:2004030
LA  - en
ID  - COCV_2005__11_1_1_0
ER  - 
%0 Journal Article
%A Imanuvilov, Oleg Yu.
%A Yamamoto, Masahiro
%T Carleman estimates for the non-stationary Lamé system and the application to an inverse problem
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2005
%P 1-56
%V 11
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv:2004030/
%R 10.1051/cocv:2004030
%G en
%F COCV_2005__11_1_1_0
Imanuvilov, Oleg Yu.; Yamamoto, Masahiro. Carleman estimates for the non-stationary Lamé system and the application to an inverse problem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 11 (2005) no. 1, pp. 1-56. doi : 10.1051/cocv:2004030. http://www.numdam.org/articles/10.1051/cocv:2004030/

[1] C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30 (1992) 1024-1065. | MR | Zbl

[2] M. Bellassoued, Distribution of resonances and decay of the local energy for the elastic wave equations. Comm. Math. Phys. 215 (2000) 375-408. | MR | Zbl

[3] M. Bellassoued, Carleman estimates and decay rate of the local energy for the Neumann problem of elasticity. Progr. Nonlinear Differ. Equations Appl. 46 (2001) 15-36. | MR | Zbl

[4] M. Bellassoued, Unicité et contrôle pour le système de Lamé. ESAIM: COCV 6 (2001) 561-592. | Numdam | MR | Zbl

[5] L. Baudouin and J.-P. Puel, Uniqueness and stability in an inverse problem for the Schrödinger equation. Inverse Problems 18 (2002) 1537-1554. | MR | Zbl

[6] A.L. Bukhgeim, Introduction to the Theory of Inverse Problems. VSP, Utrecht (2000).

[7] A.L. Bukhgeim, J. Cheng, V. Isakov and M. Yamamoto, Uniqueness in determining damping coefficients in hyperbolic equations, in Analytic Extension Formulas and their Applications, Kluwer, Dordrecht (2001) 27-46. | MR | Zbl

[8] A.L. Bukhgeim and M.V. Klibanov, Global uniqueness of a class of multidimensional inverse problems. Soviet Math. Dokl. 24 (1981) 244-247. | Zbl

[9] T. Carleman, Sur un problème d'unicité pour les systèmes d'équations aux derivées partielles à deux variables independantes. Ark. Mat. Astr. Fys. 2B (1939) 1-9. | Zbl

[10] B. Dehman and L. Robbiano, La propriété du prolongement unique pour un système elliptique. Le système de Lamé. J. Math. Pures Appl. 72 (1993) 475-492. | MR | Zbl

[11] G. Duvaut and J.L. Lions, Inequalities in Mechanics and Physics. Springer-Verlag, Berlin (1976). | MR | Zbl

[12] Yu.V. Egorov, Linear Differential Equations of Principal Type. Consultants Bureau New York (1986). | MR | Zbl

[13] M. Eller, V. Isakov, G. Nakamura and D. Tataru, Uniqueness and stability in the Cauchy problem for Maxwell's and the elasticity system, in Nonlinear Partial Differential Equations, Vol. 14, Collège de France Seminar, Elsevier-Gauthier Villars. Ser. Appl. Math. 31 (2002) 329-350. | Zbl

[14] M.E. Gurtin, The Linear Theory of Elasticity, in Encyclopedia of Physics, Vol. VIa/2, Mechanics of Solids II, C. Truesdell Ed., Springer-Verlag, Berlin (1972).

[15] L. Hörmander, Linear Partial Differential Operators. Springer-Verlag, Berlin (1963). | MR | Zbl

[16] M. Ikehata, G. Nakamura and M. Yamamoto, Uniqueness in inverse problems for the isotropic Lamé system. J. Math. Sci. Univ. Tokyo 5 (1998) 627-692. | MR | Zbl

[17] O. Imanuvilov, Controllability of parabolic equations. Mat. Sbornik 6 (1995) 109-132. | MR | Zbl

[18] O. Imanuvilov, On Carleman estimates for hyperbolic equations. Asymptotic Analysis (2002) 32 185-220. | MR | Zbl

[19] O. Imanuvilov, V. Isakov and M. Yamamoto, An inverse problem for the dynamical Lamé system with two sets of boundary data. Commun. Pure Appl. Math. 56 (2003) 1366-1382. | MR | Zbl

[20] O. Imanuvilov, V. Isakov and M. Yamamoto, New realization on the pseudoconvexity and its application to an inverse problem (preprint).

[21] O. Imanuvilov and M. Yamamoto, Lipschitz stability in inverse parabolic problems by the Carleman estimate. Inverse Problems 14 (1998) 1229-1245. | MR | Zbl

[22] O. Imanuvilov and M. Yamamoto, Global Lipschitz stability in an inverse hyperbolic problem by interior observations. Inverse Problems 17 (2001) 717-728. | MR | Zbl

[23] O. Imanuvilov and M. Yamamoto, Global uniqueness and stability in determining coefficients of wave equations. Commun. Partial Differ. Equations 26 (2001) 1409-1425. | MR | Zbl

[24] O. Imanuvilov and M. Yamamoto, Determination of a coefficient in an acoustic equation with a single measurement. Inverse Problems 19 (2003) 151-171. | MR | Zbl

[25] O. Imanuvilov and M. Yamamoto, Remarks on Carleman estimates and controllability for the Lamé system. Journées Équations aux Dérivées Partielles, Forges-les-Eaux, 3-7 juin 2002, GDR 2434 (CNRS) 1-19. | Numdam | MR

[26] O. Imanuvilov and M. Yamamoto, Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations. Publ. Res. Inst. Math. Sci. 39 (2003) 227-274. | MR | Zbl

[27] O. Imanuvilov and M. Yamamoto, Carleman estimate for a stationary isotropic Lamé system and the applications. Appl. Anal. 83 (2004) 243-270. | MR | Zbl

[28] V. Isakov, A nonhyperbolic Cauchy problem for b c and its applications to elasticity theory. Comm. Pure Appl. Math. 39 (1986) 747-767. | MR | Zbl

[29] V. Isakov, Inverse Source Problems. American Mathematical Society, Providence, Rhode Island (1990). | MR | Zbl

[30] V. Isakov, Inverse Problems for Partial Differential Equations. Springer-Verlag, Berlin (1998). | MR | Zbl

[31] V. Isakov and M. Yamamoto, Carleman estimate with the Neumann boundary condition and its applications to the observability inequality and inverse hyperbolic problems. Contem. Math. 268 (2000) 191-225. | MR | Zbl

[32] M.A. Kazemi and M.V. Klibanov, Stability estimates for ill-posed Cauchy problems involving hyperbolic equations and inequalities. Appl. Anal. 50 (1993) 93-102. | MR | Zbl

[33] A. Khaĭdarov, Carleman estimates and inverse problems for second order hyperbolic equations. Math. USSR Sbornik 58 (1987) 267-277. | MR | Zbl

[34] A. Khaĭdarov, On stability estimates in multidimensional inverse problems for differential equations. Soviet Math. Dokl. 38 (1989) 614-617. | MR | Zbl

[35] M.V. Klibanov, Inverse problems and Carleman estimates. Inverse Problems 8 (1992) 575-596. | MR | Zbl

[36] H. Kumano-Go, Pseudo-differential Operators. MIT Press, Cambrige (1981). | Zbl

[37] I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories. Cambridge University Press, Cambridge (2000). | Zbl

[38] J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag, Berlin (1971). | MR | Zbl

[39] J.L. Lions, Contrôlabilité exacte perturbations et stabilisation de systèmes distribués. Masson, Paris (1988). | Zbl

[40] J.-P. Puel and M. Yamamoto, On a global estimate in a linear inverse hyperbolic problem. Inverse Problems 12 (1996) 995-1002. | MR | Zbl

[41] J.-P. Puel and M. Yamamoto, Generic well-posedness in a multidimensional hyperbolic inverse problem. J. Inverse Ill-posed Problems 5 (1997) 55-83. | MR | Zbl

[42] L. Rachele, An inverse problem in elastodynamics: uniqueness of the wave speeds in the interior. J. Differ. Equations 162 (2000) 300-325. | MR | Zbl

[43] A. Ruiz, Unique continuation for weak solutions of the wave equation plus a potential. J. Math. Pures. Appl. 71 (1992) 455-467. | MR | Zbl

[44] D. Tataru, Carleman estimates and unique continuation for solutions to boundary value problems. J. Math. Pures. Appl. 75 (1996) 367-408. | MR | Zbl

[45] D. Tataru, A priori estimates of Carleman's type in domains with boundary. J. Math. Pures. Appl. 73 (1994) 355-387. | Zbl

[46] M. Taylor, Pseudodifferential Operators. Princeton University Press, Princeton, New Jersey (1981). | MR | Zbl

[47] M. Taylor, Pseudodifferential Operators and Nonlinear PDE. Birkhäuser, Boston (1991). | MR | Zbl

[48] V.G. Yakhno, Inverse Problems for Differential Equations of Elasticity. Nauka, Novosibirsk (1990). | MR | Zbl

[49] K. Yamamoto, Singularities of solutions to the boundary value problems for elastic and Maxwell's equations. Japan J. Math. 14 (1988) 119-163. | Zbl

[50] M. Yamamoto, Uniqueness and stability in multidimensional hyperbolic inverse problems. J. Math. Pures Appl. 78 (1999) 65-98. | MR | Zbl

[51] X. Zhang, Explicit observability inequalities for the wave equation with lower order terms by means of Carleman inequalities. SIAM J. Control Optim. 39 (2001) 812-834. | MR | Zbl

[52] C. Zuily, Uniqueness and Non-uniqueness in the Cauchy Problem. Birkhäuser, Boston, Basel, Berlin, (1983). | Zbl

Cité par Sources :