The continuum limit of interacting dislocations on multiple slip systems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 102.

In this paper we derive the continuum limit of a multiple-species, interacting particle system by proving a Γ-convergence result on the interaction energy as the number of particles tends to infinity. As the leading application, we consider n edge dislocations in multiple slip systems. Since the interaction potential of dislocations has a logarithmic singularity at zero with a sign that depends on the orientation of the slip systems, the interaction energy is unbounded from below. To make the minimization problem of this energy meaningful, we follow the common approach to regularise the interaction potential over a length-scale δ > 0. The novelty of our result is that we leave the type of regularisation general, and that we consider the joint limit n and δ → 0. Our result shows that the limit behaviour of the interaction energy is not affected by the type of the regularisation used, but that it may depend on how fast the size (i.e., δ) decays as n.

DOI : 10.1051/cocv/2020038
Classification : 82C22, 74Q05, 35A15, 82D35
Mots-clés : Particle system, many-particle limit, Γ-convergence, dislocations
@article{COCV_2020__26_1_A102_0,
     author = {van Meurs, Patrick},
     title = {The continuum limit of interacting dislocations on multiple slip systems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2020038},
     mrnumber = {4185070},
     zbl = {1459.82198},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2020038/}
}
TY  - JOUR
AU  - van Meurs, Patrick
TI  - The continuum limit of interacting dislocations on multiple slip systems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2020038/
DO  - 10.1051/cocv/2020038
LA  - en
ID  - COCV_2020__26_1_A102_0
ER  - 
%0 Journal Article
%A van Meurs, Patrick
%T The continuum limit of interacting dislocations on multiple slip systems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2020038/
%R 10.1051/cocv/2020038
%G en
%F COCV_2020__26_1_A102_0
van Meurs, Patrick. The continuum limit of interacting dislocations on multiple slip systems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 102. doi : 10.1051/cocv/2020038. http://www.numdam.org/articles/10.1051/cocv/2020038/

[1] A. Acharya A model of crystal plasticity based on the theory of continuously distributed dislocations. J. Mech. Phys. Solids 49 (2001) 761–784. | DOI | Zbl

[2] R. Alicandro, L. De Luca, A. Garroni and M. Ponsiglione, Metastability and dynamics of discrete topological singularities in two dimensions: a Γ-convergence approach. Arch. Ration. Mech. Anal. 214 (2014) 269–330. | DOI | MR | Zbl

[3] R. Alicandro, L. De Luca, A. Garroni and M. Ponsiglione, Dynamics of discrete screw dislocations on glide directions. J. Mech. Phys. Solids 92 (2016) 87–104. | DOI | MR | Zbl

[4] O. Alvarez, E. Carlini, P. Hoch, Y. Le Bouar and R. Monneau. Dislocation dynamics described by non-local hamilton–jacobi equations. Mater. Sci. Eng. A 400 (2005) 162–165. | DOI

[5] M.P. Ariza and M. Ortiz, Discrete crystal elasticity and discrete dislocations in crystals. Arch. Ration. Mech. Anal. 178 (2005) 149–226. | DOI | MR | Zbl

[6] R. Arora and A. Acharya, A unification of finite deformation J 2 Von-Mises plasticity and quantitative dislocation mechanics. Preprint (2020). | arXiv | MR

[7] J. Berendsen, M. Burger and J. Pietschmann, On a cross-diffusion model for multiple species with nonlocal interaction and size exclusion. Nonlinear Anal. 159 (2017) 10–39. | DOI | MR | Zbl

[8] T. Blass and M. Morandotti, Renormalized energy and Peach-Köhler forces for screw dislocations with antiplane shear. J. Convex Anal. 24 (2017) 547–570. | MR | Zbl

[9] W. Cai, A. Arsenlis, C.R. Weinberger and V.V. Bulatov, A non-singular continuum theory of dislocations. J. Mech. Phys. Solids 54 (2006) 561–587. | DOI | MR | Zbl

[10] J.A. Cañizo and F.S. Patacchini, Discrete minimisers are close to continuum minimisers for the interaction energy. Calc. Var. Partial Differ. Equ. 57 (2018) 1–24. | DOI | MR | Zbl

[11] P. Cermelli and G. Leoni, Renormalized energy and forces on dislocations. SIAM J. Math. Anal. 37 (2005) 1131–1160. | DOI | MR | Zbl

[12] S.J. Chapman, Y. Xiang and Y. Zhu, Homogenization of a row of dislocation dipoles from discrete dislocation dynamics. SIAM J. Appl. Math. 76 (2016) 750–775. | DOI | MR | Zbl

[13] S. Conti, A. Garroni and M. Ortiz, The line-tension approximation as the dilute limit of linear-elastic dislocations. Arch. Ration. Mech. Anal. 218 (2015) 699–755. | DOI | MR | Zbl

[14] L. De Luca, A. Garroni and M. Ponsiglione, Γ-convergence analysis of systems of edge dislocations: the self energy regime. AArch. Ration. Mech. Anal. 206 (2012) 885–910. | DOI | MR | Zbl

[15] M. Di Francesco and S. Fagioli, Measure solutions for non-local interaction pdes with two species. Nonlinearity 26 (2013) 2777–2808. | DOI | MR | Zbl

[16] M. Di Francesco and S. Fagioli, A nonlocal swarm model for predators–prey interactions. Math. Models Methods Appl. Sci. 26 (2016) 319–355. | DOI | MR | Zbl

[17] A. El Hajj, H. Ibrahim and R. Monneau, Dislocation dynamics: from microscopic models to macroscopic crystal plasticity. Continuum Mech. Thermodyn. 21 (2009) 109–123. | DOI | MR | Zbl

[18] J.H.M. Evers, R.C. Fetecau and T. Kolokolnikov, Equilibria for an aggregation model with two species. SIAM J. Appl. Dyn. Syst. 16 (1017) 2287–2338. | DOI | MR | Zbl

[19] M. Focardi and A. Garroni, A 1D macroscopic phase field model for dislocations and a second order Γ -limit. Multiscale Model. Simul. 6 (2007) 1098–1124. | DOI | MR | Zbl

[20] N. Forcadel, C. Imbert and R. Monneau, On the Notions of Solutions to Nonlinear Elliptic Problems: Results and Developments, Chap. Viscosity solutions for particle systems and homogenization of dislocation dynamics, Department of Mathematics of the Seconda Universita di Napoli, Italy (2008). | MR | Zbl

[21] N. Forcadel, C. Imbert and R. Monneau, Homogenization of the dislocation dynamics and of some particle systems with two-body interactions. Discrete Continuous Dyn. Syst. A 23 (2009) 785–826. | DOI | MR | Zbl

[22] N. Forcadel, C. Imbert and R. Monneau. Homogenization of accelerated Frenkel-Kontorova models with n types of particles. Transac. Am. Math. Soc. 364 (2012) 6187–6227. | DOI | MR | Zbl

[23] A. Garroni, G. Leoni and M. Ponsiglione, Gradient theory for plasticity via homogenization of discrete dislocations. J. Euro. Math. Soc. 12 (2010) 1231–1266. | DOI | MR | Zbl

[24] A. Garroni and S. Müller, A variational model for dislocations in the line tension limit. Arch. Ration. Mech. Anal. 181 (2006) 535–578. | DOI | MR | Zbl

[25] A. Garroni, P. Van Meurs, M.A. Peletier and L. Scardia, Boundary-layer analysis of a pile-up of walls of edge dislocations at a lock. Math. Models Methods Appl. Sci. 26 (2016) 2735–2768. | DOI | MR | Zbl

[26] A. Garroni, P. Van Meurs, M.A. Peletier and L. Scardia, Convergence and non-convergence of many-particle evolutions with multiple signs. Arch. Ration. Mech. Anal. 235 (2019) 3–49. | DOI | MR | Zbl

[27] M.G.D. Geers, R.H.J. Peerlings, M.A. Peletier and L. Scardia, Asymptotic behaviour of a pile-up of infinite walls of edge dislocations. Arch. Ration. Mech. Anal. 209 (2013) 495–539. | DOI | MR | Zbl

[28] J. Ginster, Plasticity as the Γ -limit of a two-dimensional dislocation energy: The critical regime without the assumption of well-separateness. Arch. Ration. Mech. Anal. 233 (2019) 1253–1288. | DOI | MR | Zbl

[29] A. El Hajj, H. Ibrahim and R. Monneau, Homogenization of dislocation dynamics, in IOP Conferences Series: Materials Science and Engineering (2009). | MR | Zbl

[30] C.L. Hall, Asymptotic analysis of a pile-up of regular edge dislocation walls. Mater. Sci. Eng. A 530 (2011) 144–148. | DOI

[31] C.L. Hall, S.J. Chapman and J.R. Ockendon, Asymptotic analysis of a system of algebraic equations arising in dislocation theory. SIAM J. Appl. Math. 70 (2010) 2729–2749. | DOI | MR | Zbl

[32] C.L. Hall, T. Hudson and P. Van Meurs Asymptotic analysis of boundary layers in a repulsive particle system. Acta Appl. Math. 153 (2018) 1–54. | DOI | MR | Zbl

[33] J.P. Hirth and J. Lothe, Theory of Dislocations. John Wiley & Sons, New York (1982).

[34] T. Hudson and M. Morandotti, Qualitative properties of dislocation dynamics: collisions and boundary behaviour. SIAM J. Appl. Math. 77 (2017) 1678–1705. | DOI | MR | Zbl

[35] M. Kimura, P. Van Meurs, Regularity of the minimiser of one-dimensional interaction energies. ESAIM: COCV 26 (2020) 43. | Numdam | MR | Zbl

[36] M. Koslowski, A.M. Cuitino and M. Ortiz, A phase-field theory of dislocation dynamics, strain hardening and hysteresis in ductile single crystals. J. Mech. Phys. Solids 50 (2002) 2597–2635. | DOI | MR | Zbl

[37] G. Lauteri and S. Luckhaus, An energy estimate for dislocation configurations and the emergence of cosserat-type structures in metal plasticity. Preprint (2016). | arXiv

[38] R. Monneau and S. Patrizi, Homogenization of the Peierls–Nabarro model for dislocation dynamics. J. Differ. Equ. 253 (2012) 2064–2105. | DOI | MR | Zbl

[39] M.G. Mora, M.A. Peletier and L. Scardia, Convergence of interaction-driven evolutions of dislocations with Wasserstein dissipation and slip-plane confinement. SIAM J. Math. Anal. 49 (2017) 4149–4205. | DOI | MR | Zbl

[40] M.G. Mora, L. Rondi and L. Scardia, The equilibrium measure for a nonlocal dislocation energy. Commun, Pure Appl. Math. 72 (2019) 136–158. | DOI | MR | Zbl

[41] S. Müller, L. Scardia and C.I. Zeppieri, Geometric rigidity for incompatible fields, and an application to strain-gradient plasticity. Indiana Univ. Math. J. 65 (2014) 1365–1396. | MR | Zbl

[42] F.R.N. Nabarro, Dislocations in a simple cubic lattice. Proc. Phys. Soc. 59 (1947) 256. | DOI

[43] R. Peierls, The size of a dislocation. Proc. Phys. Soc. 52 (1940) 34–37. | DOI

[44] P. Van Meurs Discrete-to-Continuum Limits of Interacting Dislocations. Ph.D. thesis, Eindhoven University of Technology, The Netherlands (2015).

[45] P. Van Meurs Many-particle limits and non-convergence of dislocation wall pile-ups. Nonlinearity 31 (2018) 165–225. | DOI | MR | Zbl

[46] P. Van Meurs and M. Morandotti, Discrete-to-continuum limits of particles with an annihilation rule. SIAM J. Appl. Math. 79 (2019) 1940–1966. | DOI | MR | Zbl

[47] P. Van Meurs and A. Muntean, Upscaling of the dynamics of dislocation walls. Adv. Math. Sci. Appl. 24 (2014) 401–414. | MR | Zbl

[48] P. Van Meurs, A. Muntean and M.A. Peletier, Upscaling of dislocation walls in finite domains. Euro. J. Appl. Math. 25 (2014) 749–781. | DOI | MR | Zbl

[49] J. Zinsl, Geodesically convex energies and confinement of solutions for a multi-component system of nonlocal interaction equations. Nonlinear Differ. Equ. Appl. NoDEA 23 (2016) 1–43. | DOI | MR | Zbl

Cité par Sources :