Regularity of the minimiser of one-dimensional interaction energies
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 27.

We consider both the minimisation of a class of nonlocal interaction energies over non-negative measures with unit mass and a class of singular integral equations of the first kind of Fredholm type. Our setting covers applications to dislocation pile-ups, contact problems, fracture mechanics and random matrix theory. Our main result shows that both the minimisation problems and the related singular integral equations have the same unique solution, which provides new regularity results on the minimiser of the energy and new positivity results on the solutions to singular integral equations.

DOI : 10.1051/cocv/2019043
Classification : 74G40, 45Bxx, 26A33
Mots-clés : Interaction energy, energy minimisation, regularity of the minimiser, singular integral equation
@article{COCV_2020__26_1_A27_0,
     author = {Kimura, M. and van Meurs, P.},
     title = {Regularity of the minimiser of one-dimensional interaction energies},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019043},
     mrnumber = {4072630},
     zbl = {1434.74057},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2019043/}
}
TY  - JOUR
AU  - Kimura, M.
AU  - van Meurs, P.
TI  - Regularity of the minimiser of one-dimensional interaction energies
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2019043/
DO  - 10.1051/cocv/2019043
LA  - en
ID  - COCV_2020__26_1_A27_0
ER  - 
%0 Journal Article
%A Kimura, M.
%A van Meurs, P.
%T Regularity of the minimiser of one-dimensional interaction energies
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2019043/
%R 10.1051/cocv/2019043
%G en
%F COCV_2020__26_1_A27_0
Kimura, M.; van Meurs, P. Regularity of the minimiser of one-dimensional interaction energies. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 27. doi : 10.1051/cocv/2019043. http://www.numdam.org/articles/10.1051/cocv/2019043/

[1] G.W. Anderson, A. Guionnet and O. Zeitouni, An introduction to random matrices. Vol. 118 of Cambridge studies in advanced mathematics (2010). | MR | Zbl

[2] V.I. Bogachev, Measure theory. In Vol. 1. Springer Science & Business Media (2007). | DOI | MR | Zbl

[3] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer Science & Business Media, New York (2010). | MR | Zbl

[4] L.A. Caffarelli, S. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. Invent. Math. 171 (2008) 425–461. | DOI | MR | Zbl

[5] T. Carleman, Über die Abelsche Integralgleichung mit konstanten Integrationsgrenzen. Math. Zeitschr. 15 (1922) 111–120. | DOI | JFM | MR

[6] Y.-S. Chan, A.C. Fannjiang and G.H. Paulino, Integral equations with hypersingular kernels—theory and applications to fracture mechanics. Int. J. Eng. Sci. 41 (2003) 683–720. | DOI | MR | Zbl

[7] P. Deift, T. Kriecherbauer and Kt.-R. Mclaughlin, New results on the equilibrium measure for logarithmic potentials in the presence of an external field. J. Approx. Theory 95 (1998) 388–475. | DOI | MR | Zbl

[8] A. Erdélyi and H. Bateman, Tables of Integral Transforms: Based in Part on Notes Left by Harry Bateman and Compiled by the Staff of the Bateman Manuscript Project. McGraw-Hill (1954). | MR

[9] R. Estrada and R.P. Kanwal, Singular Integral Equations. Springer Science & Business Media, New York (2000). | DOI | MR | Zbl

[10] K. Falconer, Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons, West Sussex (2003). | DOI | MR | Zbl

[11] P.J. Forrester, Log-Gases and Random Matrices (LMS-34). Princeton University Press (2010). | DOI | MR | Zbl

[12] A. Garroni, P. Van Meurs, M.A. Peletier and L. Scardia, Boundary-layer analysis of a pile-up of walls of edge dislocations at a lock. Math. Models Methods Appl. Sci. 26 (2016) 2735–2768. | DOI | MR | Zbl

[13] M.G.D. Geers, R.H.J. Peerlings, M.A. Peletier and L. Scardia, Asymptotic behaviour of a pile-up of infinite walls of edge dislocations. Arch. Ratl. Mech. Anal. 209 (2013) 495–539. | DOI | MR | Zbl

[14] I. Gohberg and N. Krupnik, One-dimensional linear singular integral operators. In Vol. I. Birkhäuser Verlag, Basel (1992).

[15] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, Seventh Edition. Academic Press, Burlington, Massachusetts (2007). | Zbl

[16] L. Grafakos, Classical and Modern Fourier Analysis. Prentice Hall Upper Saddle River, N.J. (2004). | MR | Zbl

[17] C.L. Hall, S.J. Chapman and J.R. Ockendon, Asymptotic analysis of a system of algebraic equations arising in dislocation theory. SIAM J. Appl. Math. 70 (2010) 2729–2749. | DOI | MR | Zbl

[18] A.K. Head and N. Louat, The distribution of dislocations in linear arrays. Aust. J. Phys. 8 (1955) 1–7. | DOI | MR | Zbl

[19] C.S. Kahane, The solution of mildly singular integral equation of the first kind on a disk. Integr. Equ. Oper. Theory 4 (1981) 548–595. | DOI | MR | Zbl

[20] D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications. Academic Press, NY, London (1980). | MR | Zbl

[21] F.W. King, Hilbert Transforms. In Vol. I. Cambridge University Press, Cambridge (2009). | MR | Zbl

[22] F.W. King, Hilbert Transforms. In Vol. II. Cambridge University Press, Cambridge (2009). | MR | Zbl

[23] A.B.J. Kuijlaars and K.T.-R. Mclaughlin, Generic behavior of the density of states in random matrix theory and equilibrium problems in the presence of real analytic external fields. Commun. Pure Appl. Math. 53 (2000) 736–785. | DOI | MR | Zbl

[24] T.B. Laurent, D. Balagué, J.A. Carrillo and G. Raoul, Dimensionality of local minimizers of the interaction energy (2014). | MR | Zbl

[25] I.K. Lifanov, L.N. Poltavskii and M.M. Vainikko, Vol. 4 of Hypersingular Integral Equations and Their Applications. CRC Press, Boca Raton, Florida (2003). | DOI | MR | Zbl

[26] K.W. Mangler, Improper Integrals in Theoretical Aerodynamics. Royal Aircraft Establishment, London (1951).

[27] M.L. Mehta, Random Matrices. In Vol. 142. Third Edition. Elsevier/ Press (2004). | MR | Zbl

[28] H.N. Mhaskar and E.B. Saff, Where does the sup norm of a weighted polynomial live? Constr. Approx. 1 (1985) 71–91. | DOI | MR | Zbl

[29] M.G. Mora, L. Rondi and L. Scardia, The equilibrium measure for a nonlocal dislocation energy. Commun. Pure Appl. Math. 72 (2019) 136–158. | DOI | MR | Zbl

[30] N.I. Muskhelishvili, Singular Integral Equations: Boundary Problems of Functions Theory and Their Application to Mathematical Physics. P. Noordhoff, Groningen (1953). | MR | Zbl

[31] I. Richards and H. Youn, Theory of Distributions: a non-technical introduction. Cambridge University Press, New York (2007). | MR | Zbl

[32] E.B. Saff and V. Totik, Logarithmic Potentials with External Fields. Springer Verlag, Berlin, Heidelberg (1997). | DOI | MR | Zbl

[33] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Singapore (1993). | MR | Zbl

[34] E. Sandier and S. Serfaty, 1D log gases and the renormalized energy: crystallization at vanishing temperature. Prob. Theory Related Fields 162 (2015) 795–846. | DOI | MR | Zbl

[35] L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60 (2007) 67–112. | DOI | MR | Zbl

[36] R. Simione, D. Slepčev and I. Topaloglu, Existence of ground states of nonlocal-interaction energies. J. Stat. Phys. 159 (2015) 972–986. | DOI | MR | Zbl

[37] P. Van Meurs, Discrete-to-Continuum Limits of Interacting Dislocations. Ph.D. thesis, Eindhoven University of Technology (2015).

[38] H. Widom, Singular integral equations in L p . Trans. Am. Math. Soc. (1960) 131–160. | MR | Zbl

Cité par Sources :