Optimal control of stochastic phase-field models related to tumor growth
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 104.

We study a stochastic phase-field model for tumor growth dynamics coupling a stochastic Cahn-Hilliard equation for the tumor phase parameter with a stochastic reaction-diffusion equation governing the nutrient proportion. We prove strong well-posedness of the system in a general framework through monotonicity and stochastic compactness arguments. We introduce then suitable controls representing the concentration of cytotoxic drugs administered in medical treatment and we analyze a related optimal control problem. We derive existence of an optimal strategy and deduce first-order necessary optimality conditions by studying the corresponding linearized system and the backward adjoint system.

DOI : 10.1051/cocv/2020022
Classification : 35R60, 35K55, 49J20, 78A70
Mots-clés : Stochastic systems of partial differential equations, Cahn-Hilliard equation, optimal control, first-order necessary conditions, tumor growth
@article{COCV_2020__26_1_A104_0,
     author = {Orrieri, Carlo and Rocca, Elisabetta and Scarpa, Luca},
     title = {Optimal control of stochastic phase-field models related to tumor growth},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2020022},
     mrnumber = {4185061},
     zbl = {1459.35415},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2020022/}
}
TY  - JOUR
AU  - Orrieri, Carlo
AU  - Rocca, Elisabetta
AU  - Scarpa, Luca
TI  - Optimal control of stochastic phase-field models related to tumor growth
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2020022/
DO  - 10.1051/cocv/2020022
LA  - en
ID  - COCV_2020__26_1_A104_0
ER  - 
%0 Journal Article
%A Orrieri, Carlo
%A Rocca, Elisabetta
%A Scarpa, Luca
%T Optimal control of stochastic phase-field models related to tumor growth
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2020022/
%R 10.1051/cocv/2020022
%G en
%F COCV_2020__26_1_A104_0
Orrieri, Carlo; Rocca, Elisabetta; Scarpa, Luca. Optimal control of stochastic phase-field models related to tumor growth. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 104. doi : 10.1051/cocv/2020022. http://www.numdam.org/articles/10.1051/cocv/2020022/

[1] A. Agosti, P.F. Antonietti, P. Ciarletta, M. Grasselli and M. Verani, A Cahn-Hilliard-type equation with application to tumor growth dynamics. Math. Methods Appl. Sci. 40 (2017) 7598–7626. | DOI | MR | Zbl

[2] V. Barbu, M. Röckner and D. Zhang, Optimal bilinear control of nonlinear stochastic Schrödinger equations driven by linear multiplicative noise. Ann. Probab. 46 (2018) 1957–1999. | DOI | MR | Zbl

[3] C. Bauzet, E. Bonetti, G. Bonfanti, F. Lebon and G. Vallet, A global existence and uniqueness result for a stochastic Allen-Cahn equation with constraint. Math. Methods Appl. Sci. 40 (2017) 5241–5261. | DOI | MR | Zbl

[4] N. Bellomo, N.K. Li, P.K. Maini, On the foundations of cancer modelling: selected topics, speculations, and perspectives. Math. Models Methods Appl. Sci. 18 (2008) 593–646. | DOI | MR | Zbl

[5] D. Breit, E. Feireisl and M. Hofmanová, Stochastically forced compressible fluid flows, Vol. 3 of De Gruyter Series in Applied and Numerical Mathematics. De Gruyter, Berlin (2018). | MR | Zbl

[6] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Publishing Co., Amsterdam (1973). | MR | Zbl

[7] A.C. Burton, Rate of growth of solid tumors as a problem of diffusion. Growth 30 (1966) 157–176.

[8] J.W. Cahn and J.E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28 (1958) 258–267. | DOI | Zbl

[9] V. Capasso and D. Morale, Stochastic modelling of tumour-induced angiogenesis. J. Math. Biol. 58 (2009) 219–233. | DOI | MR | Zbl

[10] C. Cavaterra, E. Rocca and H. Wu, Long-time Dynamics and Optimal Control of a Diffuse Interface Model for Tumor Growth. To appear in: Appl. Math. Optim. (2019). DOI: . | DOI | MR | Zbl

[11] P. Colli, G. Gilardi, E. Rocca and J. Sprekels, Optimal distributed control of a diffuse interface model of tumor growth. Nonlinearity 30 (2017) 2518–2546. | DOI | MR | Zbl

[12] P. Colli, G. Gilardi, G. Marinoschi and E. Rocca, Sliding mode control for phase field system related to tumor growth. Appl. Math. Optim. 79 (2019) 647–670. | DOI | MR | Zbl

[13] P. Colli, H. Gomez, G. Lorenzo, G. Marinoschi, A. Reali and E. Rocca, Mathematical analysis and simulation study of a phase-field model of prostate cancer growth with chemotherapy and antiangiogenic therapy effects. (2019). | arXiv | MR | Zbl

[14] F. Cornalba, A nonlocal stochastic Cahn-Hilliard equation. Nonlinear Anal. 140 (2016) 38–60. | DOI | MR | Zbl

[15] V. Cristini, X. Li, J.S. Lowengrub and S.M. Wise, Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching. J. Math. Biol. 58 (2009) 723–763. | DOI | MR | Zbl

[16] V. Cristini and J. Lowengrub, Multiscale modeling of cancer. An integrated experimental and mathematical modeling approach. Cambridge University Press, Cambridge (2010). | DOI

[17] G. Da Prato and A. Debussche, Stochastic Cahn-Hilliard equation. Nonlinear Anal. 26 (1996) 241–263. | DOI | MR | Zbl

[18] A. Debussche and L. Goudenège, Stochastic Cahn-Hilliard equation with double singular nonlinearities and two reflections. SIAM J. Math. Anal. 43 (2011) 1473–1494. | DOI | MR | Zbl

[19] K. Du and Q. Meng, A revisit to W 2 n -theory of super-parabolic backward stochastic partial differential equations in d . Stochastic Process. Appl. 120 (2010) 1996–2015. | DOI | MR | Zbl

[20] K. Du and Q. Meng, A maximum principle for optimal control of stochastic evolution equations. SIAM J. Control Optim. 51 (2013) 4343–4362. | DOI | MR | Zbl

[21] M. Ebenbeck and P. Knopf, Optimal control theory and advanced optimality conditions for a diffuse interface model of tumor growth. Preprint (2019). | arXiv | Numdam | MR | Zbl

[22] M. Ebenbeck and P. Knopf, Optimal medication for tumors modeled by a Cahn-Hilliard-Brinkman equation. Calc. Var. Partial Differ. Equ. 58 (2019) 131. | DOI | MR | Zbl

[23] N. Elezović and A. Mikelić, On the stochastic Cahn-Hilliard equation. Nonlinear Anal. 16 (1991) 1169–1200. | DOI | MR | Zbl

[24] E. Feireisl and M. Petcu, A diffuse interface model of a two-phase flow with thermal fluctuations. Preprint (2018). | arXiv | MR | Zbl

[25] E. Feireisl and M. Petcu, Stability of strong solutions for a model of incompressible two–phase flow under thermal fluctuations. J. Differ. Equ. 267 (2019) 1836–1858. | DOI | MR | Zbl

[26] F. Flandoli and D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations. Probab. Theory Relat. Fields 102 (1995) 367–391. | DOI | MR | Zbl

[27] A. Friedman, Mathematical analysis and challenges arising from models of tumor growth. Math. Models Methods Appl. Sci. 17 (2007). | DOI | MR | Zbl

[28] S. Frigeri, K.F. Lam, E. Rocca and G. Schimperna, . On a multi-species Cahn-Hilliard-Darcy tumor growth model with singular potentials. Comm Math Sci. 16 (2018) 821–856. | DOI | MR | Zbl

[29] M. Fuhrman and C. Orrieri, Stochastic maximum principle for optimal control of a class of nonlinear SPDEs with dissipative drift. SIAM J. Control Optim. 54 (2016) 341–371. | DOI | MR | Zbl

[30] M. Fuhrman and G. Tessitore, Nonlinear Kolmogorov equations in infinite dimensional spaces: the backward stochastic differential equations approach and applications to optimal control. Ann. Probab. 30 (2002) 1397–1465. | DOI | MR | Zbl

[31] M. Fuhrman, Y. Hu and G. Tessitore, . Stochastic maximum principle for optimal control of SPDEs. C. R. Math. Acad. Sci. Paris 350 (2012) 683–688. | DOI | MR | Zbl

[32] M. Fuhrman, Y. Hu and G. Tessitore. Stochastic maximum principle for optimal control of SPDEs. Appl. Math. Optim. 68 (2013) 181–217. | DOI | MR | Zbl

[33] M. Fuhrman, Y. Hu and G. Tessitore, Stochastic maximum principle for optimal control of partial differential equations driven by white noise. Stoch. Partial Differ. Equ. 6 (2018) 255–285. | MR | Zbl

[34] H. Garcke, K.F. Lam, E. Sitka and V. Styles, A Cahn–Hilliard–Darcy model for tumour growth with chemotaxis and active transport. Math. Models Methods Appl. Sci. 26 (2016) 1095–1148. | DOI | MR | Zbl

[35] H. Garcke, K.F. Lam and E. Rocca, Optimal control of treatment time in a diffuse interface model of tumor growth. Appl. Math. Optim. 78 (2018) 495–544. | DOI | MR | Zbl

[36] H. Garcke, K.F. Lam, R. Nürnberg and E. Sitka, A multiphase Cahn–Hilliard–Darcy model for tumour growth with necrosis. Math. Models Methods Appl. Sci. 28 (2018) 525–577. | DOI | MR | Zbl

[37] L. Goudenège, Stochastic Cahn-Hilliard equation with singular nonlinearity and reflection. Stoch. Process. Appl. 119 (2009) 3516–3548. | DOI | MR | Zbl

[38] H.P. Greenspan, Models for the growth of a solid tumor by diffusion. Stud. Appl. Math. 51 (1972) 317–340. | DOI | Zbl

[39] G. Guatteri, F. Masiero and C. Orrieri, Stochastic maximum principle for SPDEs with delay. Stoch. Process. Appl. 127 (2017) 2396–2427. | DOI | MR | Zbl

[40] H. Gudbjartsson and S. Patz, The Rician Distribution of Noisy MRI Data. Magn. Reson Med. 34 (1995) 910–914. | DOI

[41] I. Gyöngy and N. Krylov, Existence of strong solutions for Itô’s stochastic equations via approximations. Probab. Theory Related Fields 105 (1996) 143–158. | DOI | MR | Zbl

[42] A. Hawkins-Daarud, K.G. Van Der Zee and J.T. Oden, Numerical simulation of a thermodynamically consistent four-species tumor growth model. Int. J. Numer. Meth. Biomed. Eng. 28 (2011) 3–24. | DOI | MR | Zbl

[43] D. Hilhorst, J. Kampmann, T.N. Nguyen and K.G. Van Der Zee, Formal asymptotic limit of a diffuse-interface tumor-growth model. Math. Models Methods Appl. Sci. 25 (2015) 1011–1043. | DOI | MR | Zbl

[44] N. Ikeda and S. Watanabe, Stochastic differential equations and diffusion processes, Vol. 24 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam (1989). | MR | Zbl

[45] E.A.B.F.Lima, R.C. Almeida and J.T. Oden, Analysis and numerical solution of stochastic phase–field models of tumor growth. Numer. Methods Partial Differ. Equ. 31 (2014) 552–574. | DOI | MR | Zbl

[46] W. Liu and M. Röckner, Stochastic partial differential equations: an introduction. Springer, Cham (2015). | MR

[47] Q. Lu, X. Zhang, General Pontryagin–type stochastic maximum principle and backward stochastic evolution equations in infinite dimensions. SpringerBriefs in Mathematics. Springer, Cham (2014). | DOI | MR | Zbl

[48] C. Marinelli and L. Scarpa, A variational approach to dissipative SPDEs with singular drift. Ann. Probab. 46 (2018) 1455–1497. | DOI | MR | Zbl

[49] C. Marinelli and L. Scarpa, Refined existence and regularity results for a class of semilinear dissipative SPDEs. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 23 (2020) 2050014. | DOI | MR | Zbl

[50] M. Métivier, Semimartingales, Vol. 2 of de Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin (1982). | MR | Zbl

[51] A. Miranville, E. Rocca and G. Schimperna, On the long time behavior of a tumor growth model. J. Differ. Equ. 67 (2019) 2616–2642. | DOI | MR | Zbl

[52] S. Mirrahimi and B. Perthame, Asymptotic analysis of a selection model with space. J. Math. Pures Appl. 104 (2018) 1108–1118. | DOI | MR | Zbl

[53] Y. Moghadamnia and D. Moslemi, A stochastic mathematical model of avascular tumor growth pattern and its treatment by means of noises. Caspian J. Intern. Med. 8 (2017) 258–263.

[54] A. Niemisto, V. Dunmire, O. Yli-Harja, W. Zhang and I. Shmulevich, Analysis of angiogenesis using in vitro experiments and stochastic growth models. Phys. Rev. E 72 (2005) 062902. | DOI

[55] C. Orrieri and L. Scarpa, Singular stochastic Allen-Cahn equations with dynamic boundary conditions. J. Differ. Equ. 266 (2019) 4624–4667. | DOI | MR | Zbl

[56] E. Pardoux, Equations aux derivées partielles stochastiques nonlinéaires monotones. Ph.D. thesis, Université Paris XI (1975).

[57] C. Pouchol, J. Clairambault, A. Lorz and E. Trélat, Asymptotic analysis and optimal control of an integro–differential system modelling healthy and cancer cells exposed to chemotherapy. J. Math. Pures Appl. 116 (2018) 268–308. | DOI | MR | Zbl

[58] L. Scarpa, On the stochastic Cahn-Hilliard equation with a singular double-well potential. Nonlinear Anal. 171 (2018) 102–133. | DOI | MR | Zbl

[59] L. Scarpa, Optimal distributed control of a stochastic Cahn-Hilliard equation. SIAM J. Control Optim. 57 (2019) 3571–3602. | DOI | MR | Zbl

[60] L. Scarpa, The stochastic viscous Cahn-Hilliard equation: well-posedness, regularity and vanishing viscosity limit. Appl. Math. Optim. DOI: . (2020). | DOI | MR | Zbl

[61] A. Signori, Vanishing parameter for an optimal control problem modeling tumor growth. Preprint (2019). | arXiv | MR | Zbl

[62] J. Simon, Compact sets in the space L p ( O , T ; B ) . Ann. Mat. Pura Appl. 146 (1987) 65–96. | DOI | MR | Zbl

[63] J. Sprekels and H. Wu, Optimal distributed control of a Cahn-Hilliard-Darcy system with mass sources. To appear in: Appl. Math. Optim. DOI: (2019). | DOI | MR | Zbl

[64] W.Y. Tan and C.W. Chen, Stochastic modeling of carcinogenesis: Some new insights. Math. Comput. Model. 28 (1998) 49–71. | DOI | MR | Zbl

[65] A.W. Van Der Vaart and J.A. Wellner, Weak convergence and empirical processes. Springer Series in Statistics. Springer-Verlag, New York (1996). | DOI | MR | Zbl

[66] G. Vallet and A. Zimmermann, Well-posedness for a pseudomonotone evolution problem with multiplicative noise. J. Evol. Equ. 19 (2019) 153–202. | DOI | MR | Zbl

[67] S.M. Wise, J.S. Lowengrub, H.B. Frieboes and V. Cristini, Three-dimensional multispecies nonlinear tumor growth–I: model and numerical method. J. Theor. Biol. 253 (2008) 524–543. | DOI | MR | Zbl

[68] J. Yong and X.Y. Zhou, Stochastic controls, Vol. 43 of Applications of Mathematics. Springer-Verlag, New York (1999). | MR | Zbl

Cité par Sources :