On a question of D. Serre
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 97.

In this paper we give a negative answer to the question posed in D. Serre (Ann. Inst. Henri Poincaré C Anal. Non linéaire 35 (2018) 1209–1234, Open Question 2.1) about possible gains of integrability of determinants of divergence-free, non-negative definite matrix-fields. We also analyze the case in which the matrix-field is given by the Hessian of a convex function.

DOI : 10.1051/cocv/2020021
Classification : 26B25, 39B42, 39B62, 49N60
Mots-clés : Matrix-fields, determinants, integrability
@article{COCV_2020__26_1_A97_0,
     author = {De Rosa, Luigi and Tione, Riccardo},
     title = {On a question of {D.} {Serre}},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2020021},
     mrnumber = {4185067},
     zbl = {1460.26010},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2020021/}
}
TY  - JOUR
AU  - De Rosa, Luigi
AU  - Tione, Riccardo
TI  - On a question of D. Serre
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2020021/
DO  - 10.1051/cocv/2020021
LA  - en
ID  - COCV_2020__26_1_A97_0
ER  - 
%0 Journal Article
%A De Rosa, Luigi
%A Tione, Riccardo
%T On a question of D. Serre
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2020021/
%R 10.1051/cocv/2020021
%G en
%F COCV_2020__26_1_A97_0
De Rosa, Luigi; Tione, Riccardo. On a question of D. Serre. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 97. doi : 10.1051/cocv/2020021. http://www.numdam.org/articles/10.1051/cocv/2020021/

[1] G. Alberti, Rank one property for derivatives of functions with bounded variation. Proc. R. Soc. Edinb 123 (1993) 239–274 | DOI | MR | Zbl

[2] A. Arroyo-Rabasa, G. De Philippis, J. Hirsch and F. Rindler, Dimensional estimates and rectifiability for measures satisfying linear PDE constraints. To appear in: Geom. Funct. Anal. (2018) | MR | Zbl

[3] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, Berlin (2010) | MR | Zbl

[4] R. Coifman, P.-L. Lions, Y. Meyer and S. Semmes, Compensated compactness and Hardy spaces. J. Math. Pures Appl. Neuvième Série 72 (1993) 247–286 | MR | Zbl

[5] G. De Philippis. Regularity of optimal transport maps and applications.Ph.D. thesis, Scuola Normale Superiore (2012) | MR | Zbl

[6] G. De Philippis and F. Rindler, On the structure of A-free measures and applications. Ann. Math. 184 (2016) 1017–1039 | DOI | MR | Zbl

[7] G. De Philippis, A. De Rosa and F. Ghiraldin, Rectifiability of varifolds with locally bounded first variation with respect to anisotropic surface energies. Commun. Pure Appl. Math. 71 (2017) 1123–1148 | DOI | MR | Zbl

[8] L.C. Evans, Partial Differential Equations, Vol. 19. American Mathematical Soc., Ann Arbor (1998) | MR | Zbl

[9] L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. Chapman Hall/CRC, Boca Raton (2015) | DOI | MR | Zbl

[10] A. Figalli, The Monge-Ampère Equation and Its Applications. Zurich Lectures in Advanced Mathematics (2017) | MR | Zbl

[11] B. Kirchheim, Rigidity and Geometry of Microstructures, Max-Planck-Inst. für Mathematik in den Naturwiss, Leipzig (2003)

[12] S. Müller, A surprising higher integrability property of mappings with positive determinant. Bull. Am. Math. Soc. 21 (1989) 245–249 | DOI | MR | Zbl

[13] S. Müller, Higher integrability of determinants and weak convergence in L 1 . J. die reine Angew. Math. 1990 (1990) 412 | MR | Zbl

[14] F. Murat, Compacité par compensation. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 5 (1978) 489–507 | Numdam | MR | Zbl

[15] F. Murat, Compacité par compensation, II. Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (1979), 245–256 | MR | Zbl

[16] D. Serre, Divergence-free positive symmetric tensors and fluid dynamics. Ann. Inst. Henri Poincaré C Anal. Non linéaire 35 (2018) 1209–1234 | DOI | Numdam | MR | Zbl

[17] E. Stein, Note on the class L log L . Stud. Math. 32 (1969) 305–310 | DOI | MR | Zbl

[18] L. Tartar, Compensated compactness and applications to partial differential equations. Nonlinear Anal. Mech. IV (1979) 136–212 | MR | Zbl

[19] L. Tartar, The compensated compactness method applied to systems of conservation laws. Syst. Non-linear Partial Differ. Equ. 111 (1983) 01 | MR | Zbl

Cité par Sources :