Divergence-free positive symmetric tensors and fluid dynamics
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 5, pp. 1209-1234.

We consider d×d tensors A(x) that are symmetric, positive semi-definite, and whose row-divergence vanishes identically. We establish sharp inequalities for the integral of (detA)1d1. We apply them to models of compressible inviscid fluids: Euler equations, Euler–Fourier, relativistic Euler, Boltzman, BGK, etc. We deduce an a priori estimate for a new quantity, namely the space–time integral of ρ1np, where ρ is the mass density, p the pressure and n the space dimension. For kinetic models, the corresponding quantity generalizes Bony's functional.

DOI : 10.1016/j.anihpc.2017.11.002
Mots-clés : Conservation laws, Gas dynamics, Functional inequalities
@article{AIHPC_2018__35_5_1209_0,
     author = {Serre, Denis},
     title = {Divergence-free positive symmetric tensors and fluid dynamics},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1209--1234},
     publisher = {Elsevier},
     volume = {35},
     number = {5},
     year = {2018},
     doi = {10.1016/j.anihpc.2017.11.002},
     mrnumber = {3813963},
     zbl = {1393.35181},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.anihpc.2017.11.002/}
}
TY  - JOUR
AU  - Serre, Denis
TI  - Divergence-free positive symmetric tensors and fluid dynamics
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 1209
EP  - 1234
VL  - 35
IS  - 5
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.anihpc.2017.11.002/
DO  - 10.1016/j.anihpc.2017.11.002
LA  - en
ID  - AIHPC_2018__35_5_1209_0
ER  - 
%0 Journal Article
%A Serre, Denis
%T Divergence-free positive symmetric tensors and fluid dynamics
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 1209-1234
%V 35
%N 5
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2017.11.002/
%R 10.1016/j.anihpc.2017.11.002
%G en
%F AIHPC_2018__35_5_1209_0
Serre, Denis. Divergence-free positive symmetric tensors and fluid dynamics. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 5, pp. 1209-1234. doi : 10.1016/j.anihpc.2017.11.002. https://www.numdam.org/articles/10.1016/j.anihpc.2017.11.002/

[1] Allaire, G. Shape Optimization by the Homogenization Method, Applied Mathematical Sciences, vol. 146, Springer-Verlag, 2002 | DOI | MR | Zbl

[2] Anile, A.M. Relativistic Fluids and Magneto-Fluids, Cambridge Monographs on Mathematical Physics, Cambridge Univ. Press, 1989 | Zbl

[3] Ball, J.M. Convexity conditions and existence theorems in non-linear elasticity, Arch. Ration. Mech. Anal., Volume 63 (1977), pp. 337–403 | MR | Zbl

[4] Bony, J.-M. Journées EDPs (1987) (Saint Jean de Monts, 1987 Exp. # XVI) | MR

[5] Cercignani, C. Global weak solutions of the Boltzmann equation, J. Stat. Phys., Volume 118 (2005), pp. 333–342 | DOI | MR | Zbl

[6] Coifman, R.; Lions, P.-L.; Meyer, Y.; Semmes, S. Compacité par compensation et espaces de Hardy, C. R. Acad. Sci. Paris, Volume 309 (1989), pp. 945–949 | Numdam | MR | Zbl

[7] Conca, C.; Vanninathan, M. On uniform H2-estimates in periodic homogenization, Proc. R. Soc. Edinb. A, Volume 131 (2001), pp. 499–517 | DOI | MR | Zbl

[8] De Philippis, G.; Figalli, A. The Monge–Ampère equation and its link to optimal transportation, Bull., New Ser., Am. Math. Soc., Volume 51 (2014), pp. 527–581 | DOI | MR | Zbl

[9] DiPerna, R.; Lions, P.-L. On the Cauchy problem for the Boltzmann equation: global existence and weak stability results, Ann. Math., Volume 130 (1990), pp. 321–366 | MR | Zbl

[10] Federer, H. Geometric Measure Theory, Springer-Verlag, Berlin, Heidelberg, New York, 1969 | MR | Zbl

[11] Figalli, A.; Maggi, F.; Pratelli, A. A mass transportation approach to quantitative isoperimetric inequalities, Invent. Math., Volume 182 (2010), pp. 167–211 | DOI | MR | Zbl

[12] Gagliardo, E. Proprietà di alcune di funzioni in più variabili, Ric. Mat., Volume 7 (1958), pp. 102–137 | MR | Zbl

[13] Gromov, M.; Milman, V.D.; Schechtman, G. Isoperimetric inequalities in Riemannian manifolds. Appendix I, Asymptotic Theory of Finite Dimensional Normed Space, Lect. Notes Math., vol. 1200, Springer-Verlag, 1986, pp. 114–129 | MR | Zbl

[14] Yan, Li Yan Some existence results of fully nonlinear elliptic equations of Monge–Ampère type, Commun. Pure Appl. Math., Volume 43 (1990), pp. 233–271 | MR | Zbl

[15] Lions, P.-L.; Masmoudi, N. From Boltzmann equation to the Navier–Stokes and Euler equations II, Arch. Ration. Mech. Anal., Volume 158 (2001), pp. 195–211 | MR | Zbl

[16] Makino, T.; Ukai, S. Local smooth solutions of the relativistic Euler equation, J. Math. Kyoto Univ., Volume 35 (1995), pp. 105–114 | MR | Zbl

[17] Müller, S. A surprising higher integrability property of mappings with positive determinant, Bull., New Ser., Am. Math. Soc., Volume 21 (1989), pp. 245–248 | DOI | MR | Zbl

[18] Murat, F. Compacité par compensation, Ann. Sc. Norm. Super. Pisa, Volume 5 (1978), pp. 489–507 | Numdam | MR | Zbl

[19] Serre, D. Matrices, Grad. Texts Math., vol. 216, Springer-Verlag, 2002 | MR | Zbl

[20] Serre, D.; Friedlander, S.; Serre, D. Shock reflection in gas dynamics, Handbook of Mathematical Fluid Dynamics IV, Elsevier, North-Holland, 2007, pp. 39–122 | DOI | MR

[21] Serre, D. Expansion of a compressible gas in vacuum, Bull. Inst. Math. Acad. Sin. (N.S.), Volume 10 (2015), pp. 695–716 | MR | Zbl

[22] Tartar, L. Compensated compactness and applications to partial differential equations, Nonlinear Analysis and Mechanics: Heriot–Watt Symposium, vol. IV, Res. Notes in Math., vol. 39, Pitman, 1979, pp. 136–212 | MR | Zbl

[23] Tartar, L. The General Theory of Homogenization; A Personalized Introduction, Lecture Notes of the Unione Matematica Italiana, vol. 7, Springer-Verlag, 2009 | MR | Zbl

[24] Villani, C. Topics in Optimal Transportation, Graduate Studies in Mathematics, vol. 58, Amer. Math. Society, 2003 | MR | Zbl

  • Serre, Denis Compensated integrability on tori; a priori estimate for space-periodic gas flows, Comptes Rendus. Mathématique, Volume 362 (2024) no. G11, p. 1425 | DOI:10.5802/crmath.654
  • Golding, William Nonlinear asymptotic stability in L ∞ for Lipschitz solutions to scalar conservation laws, Comptes Rendus. Mathématique, Volume 362 (2024) no. G6, p. 581 | DOI:10.5802/crmath.553
  • Serre, Denis Compensated Integrability and Conservation Laws, Hyperbolic Problems: Theory, Numerics, Applications. Volume I, Volume 34 (2024), p. 63 | DOI:10.1007/978-3-031-55260-1_4
  • Pham, Doanh Some Geometric Inequalities by the ABP Method, International Mathematics Research Notices, Volume 2024 (2024) no. 6, p. 4656 | DOI:10.1093/imrn/rnad112
  • Moini, Nima Galilean theory of dispersion for kinetic equations, Journal of Differential Equations, Volume 379 (2024), p. 335 | DOI:10.1016/j.jde.2023.10.011
  • Silva, Cristiano S.; Miranda, Juliana F.R.; Araújo Filho, Marcio C. Inequalities for eigenvalues of operators in divergence form on Riemannian manifolds isometrically immersed in Euclidean space, Journal of Mathematical Analysis and Applications, Volume 531 (2024) no. 1, p. 127871 | DOI:10.1016/j.jmaa.2023.127871
  • Arroyo-Rabasa, Adolfo; De Philippis, Guido; Hirsch, Jonas; Rindler, Filip; Skorobogatova, Anna Higher integrability for measures satisfying a PDE constraint, Transactions of the American Mathematical Society (2024) | DOI:10.1090/tran/9189
  • De Rosa, Luigi; Tione, Riccardo Fine properties of symmetric and positive matrix fields with bounded divergence, Advances in Mathematics, Volume 427 (2023), p. 109130 | DOI:10.1016/j.aim.2023.109130
  • Sorella, Massimo; Tione, Riccardo The four-state problem and convex integration for linear differential operators, Journal of Functional Analysis, Volume 284 (2023) no. 4, p. 109785 | DOI:10.1016/j.jfa.2022.109785
  • Serre, Denis About the shock formation in multi-dimensional scalar conservation laws, Journal of Hyperbolic Differential Equations, Volume 20 (2023) no. 04, p. 903 | DOI:10.1142/s0219891623500261
  • Serre, Denis Divergence-Free Tensors and Cofactors in Geometry and Fluid Dynamics, Mathematics Going Forward, Volume 2313 (2023), p. 461 | DOI:10.1007/978-3-031-12244-6_32
  • Araújo Filho, Marcio C.; Gomes, José N. V. Eigenvalue estimates for a class of elliptic differential operators in divergence form on Riemannian manifolds isometrically immersed in Euclidean space, Zeitschrift für angewandte Mathematik und Physik, Volume 74 (2023) no. 4 | DOI:10.1007/s00033-023-02054-1
  • Serre, Denis Mixed determinants, compensated integrability, and new a priori estimates in gas dynamics, Quarterly of Applied Mathematics, Volume 81 (2022) no. 2, p. 281 | DOI:10.1090/qam/1640
  • Araújo Filho, Marcio C. Inequalities for eigenvalues of fourth-order elliptic operators in divergence form on complete Riemannian manifolds, Zeitschrift für angewandte Mathematik und Physik, Volume 73 (2022) no. 2 | DOI:10.1007/s00033-022-01690-3
  • Araújo Filho, Marcio C.; Gomes, José N. V. Estimates of eigenvalues of an elliptic differential system in divergence form, Zeitschrift für angewandte Mathematik und Physik, Volume 73 (2022) no. 5 | DOI:10.1007/s00033-022-01848-z
  • Serre, Denis Source-Solutions for the Multi-dimensional Burgers Equation, Archive for Rational Mechanics and Analysis, Volume 239 (2021) no. 1, p. 95 | DOI:10.1007/s00205-020-01576-6
  • Serre, Denis Hard Spheres Dynamics: Weak Vs Strong Collisions, Archive for Rational Mechanics and Analysis, Volume 240 (2021) no. 1, p. 243 | DOI:10.1007/s00205-021-01610-1
  • Skipper, Jack; Wiedemann, Emil Lower semi-continuity for 𝒜-quasiconvex functionals under convex restrictions, ESAIM: Control, Optimisation and Calculus of Variations, Volume 27 (2021), p. 107 | DOI:10.1051/cocv/2021105
  • Serre, Denis Projective Properties of Divergence-Free Symmetric Tensors, and New Dispersive Estimates in Gas Dynamics, Milan Journal of Mathematics, Volume 89 (2021) no. 2, p. 433 | DOI:10.1007/s00032-021-00342-x
  • Serre, Denis A Priori Estimates from First Principles in Gas Dynamics, Waves in Flows (2021), p. 1 | DOI:10.1007/978-3-030-67845-6_1
  • De Rosa, Luigi; Tione, Riccardo On a question of D. Serre, ESAIM: Control, Optimisation and Calculus of Variations, Volume 26 (2020), p. 97 | DOI:10.1051/cocv/2020021
  • De Rosa, Luigi; Serre, Denis; Tione, Riccardo On the upper semicontinuity of a quasiconcave functional, Journal of Functional Analysis, Volume 279 (2020) no. 7, p. 108660 | DOI:10.1016/j.jfa.2020.108660
  • Crosta, Giovanni Franco, 2019 International Conference on Electromagnetics in Advanced Applications (ICEAA) (2019), p. 774 | DOI:10.1109/iceaa.2019.8878977
  • Serre, Denis; Silvestre, Luis Multi-dimensional Burgers Equation with Unbounded Initial Data: Well-Posedness and Dispersive Estimates, Archive for Rational Mechanics and Analysis, Volume 234 (2019) no. 3, p. 1391 | DOI:10.1007/s00205-019-01414-4
  • Serre, Denis Compensated integrability. Applications to the Vlasov–Poisson equation and other models in mathematical physics, Journal de Mathématiques Pures et Appliquées, Volume 127 (2019), p. 67 | DOI:10.1016/j.matpur.2018.06.025
  • Serre, Denis Divergence et déterminant des tenseurs symétriques positifs, Séminaire Laurent Schwartz — EDP et applications (2019), p. 1 | DOI:10.5802/slsedp.127

Cité par 26 documents. Sources : Crossref