A tumor growth model of Hele-Shaw type as a gradient flow
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 103.

In this paper, we characterize a degenerate PDE as the gradient flow in the space of nonnegative measures endowed with an optimal transport-growth metric. The PDE of concern, of Hele-Shaw type, was introduced by Perthame et. al. as a mechanical model for tumor growth and the metric was introduced recently in several articles as the analogue of the Wasserstein metric for nonnegative measures. We show existence of solutions using minimizing movements and show uniqueness of solutions on convex domains by proving the Evolutional Variational Inequality. Our analysis does not require any regularity assumption on the initial condition. We also derive a numerical scheme based on the discretization of the gradient flow and the idea of entropic regularization. We assess the convergence of the scheme on explicit solutions. In doing this analysis, we prove several new properties of the optimal transport-growth metric, which generally have a known counterpart for the Wasserstein metric.

DOI : 10.1051/cocv/2020019
Classification : 49Q22, 47J30, 35Q92, 35K55, 76D27
Mots-clés : Wasserstein-Fisher-Rao, Hellinger-Kantorovich, gradient flow, tumor growth model
@article{COCV_2020__26_1_A103_0,
     author = {Di Marino, Simone and Chizat, L\'ena{\"\i}c},
     title = {A tumor growth model of {Hele-Shaw} type as a gradient flow},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2020019},
     mrnumber = {4185055},
     zbl = {1460.92050},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2020019/}
}
TY  - JOUR
AU  - Di Marino, Simone
AU  - Chizat, Lénaïc
TI  - A tumor growth model of Hele-Shaw type as a gradient flow
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2020019/
DO  - 10.1051/cocv/2020019
LA  - en
ID  - COCV_2020__26_1_A103_0
ER  - 
%0 Journal Article
%A Di Marino, Simone
%A Chizat, Lénaïc
%T A tumor growth model of Hele-Shaw type as a gradient flow
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2020019/
%R 10.1051/cocv/2020019
%G en
%F COCV_2020__26_1_A103_0
Di Marino, Simone; Chizat, Lénaïc. A tumor growth model of Hele-Shaw type as a gradient flow. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 103. doi : 10.1051/cocv/2020019. http://www.numdam.org/articles/10.1051/cocv/2020019/

[1] L. Ambrosio, N. Gigli and G. Savaré, Gradient flows: in metric spaces and in the space of probability measures. Springer Science & Business Media, Berlin (2008). | MR | Zbl

[2] J.-D. Benamou, G. Carlier, M. Cuturi, L. Nenna and G. Peyré, Iterative bregman projections for regularized transportation problems. SIAM J. Sci. Comput. 37 (2015) A1111–A1138. | DOI | MR | Zbl

[3] J.-D. Benamou, G. Carlier and M. Laborde, An augmented lagrangian approach to wasserstein gradient flows and applications. ESAIM: PROCs. 54 (2016) 1–17. | DOI | MR | Zbl

[4] G. Carlier, V. Duval, G. Peyré and B. Schmitzer, Convergence of entropic schemes for optimal transport and gradient flows. SIAM J. Math. Anal. (2017) to appear. | MR | Zbl

[5] L. Chizat, G. Peyré, B. Schmitzer and F.-X. Vialard, An interpolating distance between optimal transport and Fisher–Rao metrics. Found. Comput. Math. 18 (2018) 1–44. | DOI | MR | Zbl

[6] L. Chizat, G. Peyré, B. Schmitzer and F.-X. Vialard, Scaling algorithms for unbalanced optimal transport problems. Math. Comput. 87 (2018) 2563–2609. | DOI | MR | Zbl

[7] L. Chizat, G. Peyré, B. Schmitzer and F.-X. Vialard, Unbalanced optimal transport: Dynamic and Kantorovich formulations. J. Funct. Anal. 274 (2018) 3090–3123. | DOI | MR | Zbl

[8] K. Craig and A. Bertozzi, A blob method for the aggregation equation. Math. Comput. 85 (2016) 1681–1717. | DOI | MR | Zbl

[9] M. Cuturi, Sinkhorn distances: Lightspeed computation of optimal transport, in Proc. NIPS, edited by C.J.C. Burges, L. Bottou, Z. Ghahramani and K.Q. Weinberger (2013) 2292–2300.

[10] S. Daneri and G. Savaré, Eulerian calculus for the displacement convexity in the wasserstein distance. SIAM J. Math. Anal. 40 (2008) 1104–1122. | DOI | MR | Zbl

[11] G. De Philippis, A.R. Mészáros, F. Santambrogio and B. Velichkov, Bv estimates in optimal transportation and applications. Arch. Ration. Mech. Anal. 219 (2016) 829–860. | DOI | MR | Zbl

[12] S. Di Marino and A.R. Mészáros, Uniqueness issues for evolution equations with density constraints. Math. Models Methods Appl. Sci. 26 (2016) 1761–1783. | DOI | MR | Zbl

[13] A. Figalli and N. Gigli, A new transportation distance between non-negative measures, with applications to gradients flows with dirichlet boundary conditions. J. Math. Appl. 94 (2010) 107–130. | MR | Zbl

[14] T. Gallouët, M. Laborde and L. Monsaingeon, An unbalanced optimal transport splitting scheme for general advection-reaction-diffusion problems. ESAIM: COCV 25 (2019) 8. | Numdam | MR | Zbl

[15] T.O. Gallouët and L. Monsaingeon, A JKO splitting scheme for Kantorovich–Fisher–Rao gradient flows. SIAM J. Math. Anal. 49 (2017) 1100–1130. | DOI | MR | Zbl

[16] W. Gangbo and R.J. Mccann, The geometry of optimal transportation. Acta Math. 177 (1996) 113–161. | DOI | MR | Zbl

[17] L. Giacomelli and F. Otto, Variatonal formulation for the lubrication approximation of the Hele-Shaw flow. Calc. Var. Partial Differ. Equ. 13 (2001) 377–403. | DOI | MR | Zbl

[18] P. Hajłasz, P. Koskela and H. Tuominen, Sobolev embeddings, extensions and measure density condition. J. Funct. Anal. 254 (2008) 1217–1234. | DOI | MR | Zbl

[19] P. Hajłasz, P. Koskela, H. Tuominen, et al., Measure density and extendability of sobolev functions. Rev. Mate. Iberoam. 24 (2008) 645–669. | MR | Zbl

[20] P.W. Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta Math. 147 (1981) 71–88. | DOI | MR | Zbl

[21] R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker–Planck equation. SIAM J Math. Anal. 29 (1998) 1–17. | DOI | MR | Zbl

[22] I. Kim and N. Požár, Porous medium equation to Hele-Shaw flow with general initial density. Trans. Am. Math. Soc. 370 (2018) 873–909. | DOI | MR | Zbl

[23] I. Kim, N. Požár and B. Woodhouse, Singular limit of the porous medium equation with a drift. Adv. Math. 349 (2019) 682–732. | DOI | MR | Zbl

[24] S. Kondratyev, L. Monsaingeon and D. Vorotnikov, A fitness-driven cross-diffusion system from population dynamics as a gradient flow. J. Differ. Equ. 261 (2016) 2784–2808. | DOI | MR | Zbl

[25] S. Kondratyev, L. Monsaingeon and D. Vorotnikov, A new optimal transport distance on the space of finite Radon measures. Adv. Differ. Equ. 21 (2016) 1117–1164. | MR | Zbl

[26] B. Lemmens and R. Nussbaum, Nonlinear Perron-Frobenius Theory, Vol. 189. Cambridge University Press, Cambridge (2012). | DOI | MR | Zbl

[27] C. Léonard, From the Schrödinger problem to the Monge–Kantorovich problem. J. Funct. Anal. 262 (2012) 1879–1920. | DOI | MR | Zbl

[28] M. Liero and A. Mielke, Gradient structures and geodesic convexity for reaction–diffusion systems. Phil. Trans. R. Soc. A 371 (2013) 20120346. | DOI | MR | Zbl

[29] M. Liero, A. Mielke and G. Savaré, On geodesic λ-convexity with respect to the Hellinger-Kantorovich distance, in preparation.

[30] M. Liero, A. Mielke and G. Savaré, Optimal transport in competition with reaction: The Hellinger–Kantorovich distance and geodesic curves. SIAM J. Math. Anal. 48 (2016) 2869–2911. | DOI | MR | Zbl

[31] M. Liero, A. Mielke and G. Savaré, Optimal entropy-transport problems and a new Hellinger–Kantorovich distance between positive measures. Invent. Math. 211 (2018) 969–1117. | DOI | MR | Zbl

[32] B. Maury and A. Preux, Pressureless Euler equations with maximal density constraint: a time-splitting scheme. Topol. Optim. Optim. Transp. 17 (2017) 333. | DOI | MR | Zbl

[33] B. Maury, A. Roudneff-Chupin and F. Santambrogio, A macroscopic crowd motion model of gradient flow type. Math. Models Methods Appl. Sci. 20 (2010) 1787–1821. | DOI | MR | Zbl

[34] B. Maury, A. Roudneff-Chupin, F. Santambrogio and J. Venel, Handling congestion in crowd motion modeling. Netw. Heterog. Media 6 (2011) 485–519. | DOI | MR | Zbl

[35] A. Mellet, B. Perthame and F. Quiros, A Hele–Shaw problem for tumor growth. J. Funct. Anal. 273 (2017) 3061–3093. | DOI | MR | Zbl

[36] F. Otto, Dynamics of labyrinthine pattern formation in magnetic fluids: A mean-field theory. Arch. Ration. Mech. Anal. 141 (1998) 63–103. | DOI | MR | Zbl

[37] B. Perthame, F. Quirós and J.L. Vázquez, The Hele-Shaw asymptotics for mechanical models of tumor growth. Arch. Ration. Mech. Anal. 212 (2014) 93–127. | DOI | MR | Zbl

[38] G. Peyré, Entropic approximation of Wasserstein gradient flows. SIAM J. Imag. Sci. 8 (2015) 2323–2351. | DOI | MR | Zbl

[39] A. Preux, Transport optimal et équations des gaz sans pression avec contrainte de densité maximale. Ph.D. thesis, Université Paris-Saclay, Département de Mathématiques. (2016).

[40] F. Santambrogio, {Euclidean, metric and Wasserstein} gradient flows: an overview. Bull. Math. Sci. 7 (2017) 87–154. | DOI | MR | Zbl

[41] B. Schmitzer, Stabilized sparse scaling algorithms for entropy regularized transport problems. SIAM J. Sci. Comput. 41 (2019) A1443–A1481. | DOI | MR | Zbl

[42] A. Visintin, Strong convergence results related to strict convexity. Commun. Partial Differ. Equ. 9 (1984) 439–466. | DOI | MR | Zbl

Cité par Sources :