An unbalanced optimal transport splitting scheme for general advection-reaction-diffusion problems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 8.

In this paper, we show that unbalanced optimal transport provides a convenient framework to handle reaction and diffusion processes in a unified metric setting. We use a constructive method, alternating minimizing movements for the Wasserstein distance and for the Fisher-Rao distance, and prove existence of weak solutions for general scalar reaction-diffusion-advection equations. We extend the approach to systems of multiple interacting species, and also consider an application to a very degenerate diffusion problem involving a Gamma-limit. Moreover, some numerical simulations are included.

DOI : 10.1051/cocv/2018001
Classification : 35K15, 35K57, 35K65, 47J30
Mots-clés : Unbalanced optimal transport, Wasserstein-Fisher-Rao, Hellinger-Kantorovich, JKO scheme, reaction-diffusion-advection equations
Gallouët, Thomas 1 ; Laborde, Maxime 1 ; Monsaingeon, Léonard 1

1
@article{COCV_2019__25__A8_0,
     author = {Gallou\"et, Thomas and Laborde, Maxime and Monsaingeon, L\'eonard},
     title = {An unbalanced optimal transport splitting scheme for general advection-reaction-diffusion problems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2018001},
     zbl = {1444.35090},
     mrnumber = {3943365},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2018001/}
}
TY  - JOUR
AU  - Gallouët, Thomas
AU  - Laborde, Maxime
AU  - Monsaingeon, Léonard
TI  - An unbalanced optimal transport splitting scheme for general advection-reaction-diffusion problems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2018001/
DO  - 10.1051/cocv/2018001
LA  - en
ID  - COCV_2019__25__A8_0
ER  - 
%0 Journal Article
%A Gallouët, Thomas
%A Laborde, Maxime
%A Monsaingeon, Léonard
%T An unbalanced optimal transport splitting scheme for general advection-reaction-diffusion problems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2018001/
%R 10.1051/cocv/2018001
%G en
%F COCV_2019__25__A8_0
Gallouët, Thomas; Laborde, Maxime; Monsaingeon, Léonard. An unbalanced optimal transport splitting scheme for general advection-reaction-diffusion problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 8. doi : 10.1051/cocv/2018001. http://www.numdam.org/articles/10.1051/cocv/2018001/

[1] M. Agueh, Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory. Adv. Differ. Equ. 10 (2005) 309–360. | MR | Zbl

[2] D. Alexander, I. Kim and Y. Yao, Quasi-static evolution and congested crowd transport. Nonlinearity 27 (2014) 823. | DOI | MR | Zbl

[3] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000). | MR | Zbl

[4] L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2005). | MR | Zbl

[5] J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84 2000 375–393. | DOI | MR | Zbl

[6] J.-D. Benamou, G. Carlier and M. Laborde, An augmented Lagrangian approach to Wasserstein gradient flows and applications. ESAIM: PROCs. 54 (2016) 1–17. | DOI | MR | Zbl

[7] A. Braides. Γ-Convergence for Beginners. Vol. 22 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2002). | MR | Zbl

[8] G. Carlier and M. Laborde, A splitting method for nonlinear diffusions with nonlocal, nonpotential drifts. Nonlinear Anal.: Theory Methods Appl. 150 (2017) 1–18. | DOI | MR | Zbl

[9] J. A. Carrillo, M. Difrancesco, A. Figalli, T. Laurent and D. Slepčev, Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations. Duke Math. J. 156 (2011) 229–271. | DOI | MR | Zbl

[10] L. Chizat and S. Di Marino, A Tumor Growth Model of Hele-Shaw Type as a Gradient Flow. Preprint (2017). | arXiv | MR

[11] L. Chizat, G. Peyré, B. Schmitzer and F.-X. Vialard, An Interpolating Distance Between Optimal Transport and Fischer-Rao. Preprint (2015). | arXiv | MR

[12] L. Chizat, G. Peyré, B. Schmitzer and F.-X. Vialard, Unbalanced Optimal Transport: Geometry and Kantorovich Formulation. Preprint (2015). | arXiv | MR

[13] L. Chizat, G. Peyré, B. Schmitzer and F.-X. Vialard, Scaling Algorithms for Unbalanced Transport Problems. Preprint (2016). | arXiv | MR

[14] G. De Philippis, A.R. Mészáros, F. Santambrogio and B. Velichkov, BV estimates in optimal transportation and applications. Arch. Ration. Mech. Anal. 219 (2016) 829–860. | DOI | MR | Zbl

[15] M. Di Francesco and S. Fagioli, Measure solutions for non-local interaction PDEs with two species. Nonlinearity 26 (2013) 2777–2808. | DOI | MR | Zbl

[16] A. Figalli and N. Gigli, A new transportation distance between non-negative measures, with applications to gradients flows with dirichlet boundary conditions. J. Math. Pures Appl. 94 (2010) 107–130. | DOI | MR | Zbl

[17] F. Fleißner, Gamma-Convergence and Relaxations for Gradient Flows in Metric Spaces: A Minimizing Movement Approach. Preprint (2016). | arXiv | MR

[18] T. Gallouët and L. Monsaingeon, A JKO Splitting Scheme for Kantorovich-Fischer-Rao Gradient Flows. Preprint (2016). | arXiv | MR

[19] W. Gangbo and R.J. Mccann, The geometry of optimal transportation. Acta Math. 177 (1996) 113–161. | DOI | MR | Zbl

[20] R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29 (1998) 1–17. | DOI | MR | Zbl

[21] D. Kinderlehrer, L. Monsaingeon and X. Xu, A Wasserstein Gradient Flow Approach to Poisson-Nernst-Planck Equations. Preprint (2015). | arXiv | Numdam | MR

[22] S. Kondratyev, L. Monsaingeon and D. Vorotnikov, A New Optimal Transport Distance on the Space of Finite Radon Measures. Preprint (2015). | arXiv | MR

[23] S. Kondratyev, L. Monsaingeon and D. Vorotnikov, A fitness-driven cross-diffusion system from population dynamics as a gradient flow. J. Differ. Equ. 261 (2016) 2784–2808. | DOI | MR | Zbl

[24] M. Laborde, On Some Non linear Evolution Systems Which Are Perturbations of Wasserstein Gradient Flows. Radon Ser. Comput. Appl. Math. (2015). | MR

[25] M. Liero and A. Mielke, Gradient structures and geodesic convexity for reaction–diffusion systems. Philos. Trans. R. Soc. A 371 (2013) 20120346. | DOI | MR | Zbl

[26] M. Liero, A. Mielke and G. Savaré, Optimal Entropy-Transport Problems and a New Hellinger-Kantorovich Distance Between Positive Measures. Invent. Math. 211 (2018) 969–1117. | DOI | MR | Zbl

[27] M. Liero, A. Mielke and G. Savaré, Optimal Transport in Competition with Reaction: The Hellinger-Kantorovich Distance and Geodesic Curves. SIAM J. Math. Anal. 48 (2016) 2869–2911. | DOI | MR | Zbl

[28] S. Lisini, D. Matthes and G. Savaré, Cahn-Hilliard and thin film equations with nonlinear mobility as gradient flows in weighted-Wasserstein metrics. J. Differ. Equ. 253 (2012) 814–850. | DOI | MR | Zbl

[29] D. Matthes, R.J. Mccann and G. Savaré, A family of nonlinear fourth order equations of gradient flow type. Commun. Partial Diff. Equ. 34 (2009) 1352–1397. | DOI | MR | Zbl

[30] B. Maury, A. Roudneff-Chupin, F. Santambrogio and J. Venel, Handling congestion in crowd motion modeling. Netw. Heterog. Media 6 (2011) 485–519. | DOI | MR | Zbl

[31] J.D. Murray, Mathematical Biology II. Spatial Models and Biomedical Applications, 3rd edn. Vol. 18 of Interdisciplinary Applied Mathematics. Springer-Verlag, New York (2003). | DOI | MR | Zbl

[32] F. Otto, Double Degenerate Diffusion Equations as Steepest Descent (1996).

[33] F. Otto, Dynamics of labyrinthine pattern formation in magnetic fluids: A mean-field theory. Arch. Ration. Mech. Anal. 141 (1998) 63–103. | DOI | MR | Zbl

[34] F. Otto, The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equ. 26 (2001) 101–174. | DOI | MR | Zbl

[35] B. Perthame, Transport Equations in Biology. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2007). | DOI | MR | Zbl

[36] B. Perthame, F. Quirós and J.L. Vázquez, The Hele-Shaw asymptotics for mechanical models of tumor growth. Arch. Ration. Mech. Anal. 212 (2014) 93–127. | DOI | MR | Zbl

[37] B. Perthame, M. Tang and N. Vauchelet, Traveling wave solution of the Hele-Shaw model of tumor growth with nutrient. Math. Models Methods Appl. Sci. 24 (2014) 2601–2626. | DOI | MR | Zbl

[38] L. Petrelli and A. Tudorascu, Variational principle for general diffusion problems. Appl. Math. Optim. 50 (2004) 229–257. | DOI | MR | Zbl

[39] B. Piccoli and F. Rossi, Generalized Wasserstein distance and its application to transport equations with source. Arch. Ration. Mech. Anal. 211 (2014) 335–358. | DOI | MR | Zbl

[40] M. Pierre, Global existence in reaction-diffusion systems with control of mass: a survey. Milan J. Math. 78 (2010) 417–455. | DOI | MR | Zbl

[41] R. Rossi and G. Savaré, Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. 2 (2003) 395–431. | Numdam | MR | Zbl

[42] E. Sandier and S. Serfaty, Gamma-convergence of gradient flows with applications to Ginzburg-Landau. Commun. Pure Appl. Math. 57  (2004) 1627–1672. | DOI | MR | Zbl

[43] F. Santambrogio, Optimal Transport for Applied Mathematicians. Vol. 87 of Progress in Nonlinear Differential Equations and their Applications. Birkasauser Verlag, Basel (2015). | DOI | MR | Zbl

[44] J.L. Vázquez, The Porous Medium Equation: Mathematical Theory. Oxford University Press (2007). | MR | Zbl

[45] C. Villani, Topics in Optimal Transportation. Vol. 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2003). | MR | Zbl

[46] C. Villani, Optimal Transport. Old and new Vol. 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin (2009). | MR | Zbl

[47] J. Zinsl, Geodesically convex energies and confinement of solutions for a multi-component system of nonlocal interaction equations. Technical report (2014). | MR

Cité par Sources :