External optimal control of fractional parabolic PDEs
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 20.

In [Antil et al. Inverse Probl. 35 (2019) 084003.] we introduced a new notion of optimal control and source identification (inverse) problems where we allow the control/source to be outside the domain where the fractional elliptic PDE is fulfilled. The current work extends this previous work to the parabolic case. Several new mathematical tools have been developed to handle the parabolic problem. We tackle the Dirichlet, Neumann and Robin cases. The need for these novel optimal control concepts stems from the fact that the classical PDE models only allow placing the control/source either on the boundary or in the interior where the PDE is satisfied. However, the nonlocal behavior of the fractional operator now allows placing the control/source in the exterior. We introduce the notions of weak and very-weak solutions to the fractional parabolic Dirichlet problem. We present an approach on how to approximate the fractional parabolic Dirichlet solutions by the fractional parabolic Robin solutions (with convergence rates). A complete analysis for the Dirichlet and Robin optimal control problems has been discussed. The numerical examples confirm our theoretical findings and further illustrate the potential benefits of nonlocal models over the local ones.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2020005
Classification : 49J20, 49K20, 35S15, 65R20, 65N30
Mots-clés : Parabolic PDEs, fractional Laplacian, weak and very-weak solutions, Dirichlet, Neumann, Robin external control problems
@article{COCV_2020__26_1_A20_0,
     author = {Antil, Harbir and Verma, Deepanshu and Warma, Mahamadi},
     title = {External optimal control of fractional parabolic {PDEs}},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2020005},
     mrnumber = {4065621},
     zbl = {1444.35144},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2020005/}
}
TY  - JOUR
AU  - Antil, Harbir
AU  - Verma, Deepanshu
AU  - Warma, Mahamadi
TI  - External optimal control of fractional parabolic PDEs
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2020005/
DO  - 10.1051/cocv/2020005
LA  - en
ID  - COCV_2020__26_1_A20_0
ER  - 
%0 Journal Article
%A Antil, Harbir
%A Verma, Deepanshu
%A Warma, Mahamadi
%T External optimal control of fractional parabolic PDEs
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2020005/
%R 10.1051/cocv/2020005
%G en
%F COCV_2020__26_1_A20_0
Antil, Harbir; Verma, Deepanshu; Warma, Mahamadi. External optimal control of fractional parabolic PDEs. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 20. doi : 10.1051/cocv/2020005. http://www.numdam.org/articles/10.1051/cocv/2020005/

[1] G. Acosta, F.M. Bersetche and J.P. Borthagaray, A short fe implementation for a 2d homogeneous dirichlet problem of a fractional laplacian. Comput. Math. Appl. 74 (2017) 784–816. | DOI | MR | Zbl

[2] H. Antil and S. Bartels, Spectral Approximation of Fractional PDEs in Image Processing and Phase Field Modeling. Comput. Methods Appl. Math. 17 (2017) 661–678. | DOI | MR | Zbl

[3] H. Antil and D. Leykekhman, A brief introduction to PDE-constrained optimization, in Frontiers in PDE-constrained optimization, Vol. 163. Springer, New York (2018) 3–40. | DOI | MR | Zbl

[4] H. Antil and C.N. Rautenberg, Sobolev spaces with non-Muckenhoupt weights, fractional elliptic operators, and applications. SIAM J. Math. Anal. 51 (2019) 2479–2503. | DOI | MR | Zbl

[5] H. Antil and M. Warma, Optimal control of the coefficient for regional fractional p-Laplace equations: Approximation and convergence. Math. Control Relat. Fields. 9 (2019) 1–38. | DOI | MR | Zbl

[6] H. Antil and M. Warma, Optimal control of fractional semilinear PDEs. ESAIM Control Optim. Calc. Var. 26 (2020) 30. | Numdam | MR | Zbl

[7] H. Antil, J. Pfefferer and M. Warma, A note on semilinear fractional elliptic equation: analysis and discretization. ESAIM: M2AN 51 (2017) 2049–2067. | DOI | Numdam | MR | Zbl

[8] H. Antil, R.H. Nochetto and P. Venegas, Controlling the Kelvin force: basic strategies and applications to magnetic drug targeting. Optim. Eng. 19 (2018) 559–589. | DOI | MR | Zbl

[9] H. Antil, R.H. Nochetto and P. Venegas, Optimizing the Kelvin force in a moving target subdomain. Math. Models Methods Appl. Sci. 28 (2018) 95–130. | DOI | MR | Zbl

[10] H. Antil, J. Pfefferer and S. Rogovs, Fractional operators with inhomogeneous boundary conditions: Analysis, control, and discretization. Commun. Math. Sci. 16 (2018) 1395–1426. | DOI | MR | Zbl

[11] H. Antil, R. Khatri and M. Warma, External optimal control of nonlocal PDEs. Inverse Probl. 35 (2019) 084003. | DOI | MR | Zbl

[12] H. Antil, Z. Di and R. Khatri, Bilevel optimization, deep learning and fractional Laplacian regularization with applications in tomography. arXiv preprint , 2019. | arXiv | MR | Zbl

[13] W. Arendt and R. Nittka, Equivalent complete norms and positivity. Arch. Math. 92 (2009) 414–427. | DOI | MR | Zbl

[14] W. Arendt, C.J.K. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace transforms and Cauchy problems, volume 96 of Monographs in Mathematics, 2nd edn., Birkhäuser/Springer Basel AG, Basel (2011). | DOI | MR | Zbl

[15] H. Attouch, G. Buttazzo and G. Michaille, Variational analysis in Sobolev and BV spaces, MOS-SIAM Series on Optimization, 2nd edn.,Vol. 17. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2014). | DOI | MR | Zbl

[16] U. Biccari, M. Warma and E. Zuazua, Local regularity for fractional heat equations, in Recent Advances in PDEs: Analysis, Numericsand Control, Springer, Berlin (2018), 233–249. | MR

[17] C. Bjorland, L. Caffarelli and A. Figalli, Nonlocal tug-of-war and the infinity fractional Laplacian. Comm. Pure Appl. Math. 65 (2012) 337–380. | DOI | MR | Zbl

[18] L. Brasco, E. Parini and M. Squassina, Stability of variational eigenvalues for the fractional p-Laplacian. Discrete Contin. Dyn. Syst. 36 (2016) 1813–1845. | DOI | MR | Zbl

[19] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32 (2007) 1245–1260. | DOI | MR | Zbl

[20] L.A. Caffarelli, S. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. Invent. Math. 171 (2008) 425–461. | DOI | MR | Zbl

[21] L.A. Caffarelli, J.-M. Roquejoffre and Y. Sire, Variational problems for free boundaries for the fractional Laplacian. J. Eur. Math. Soc. 12 (2010) 1151–1179. | DOI | MR | Zbl

[22] A. Carbotti, S. Dipierro and E. Valdinoci, Local density of solutions of time and space fractional equations. arXiv preprint , (2018). | arXiv

[23] B. Claus and M. Warma, Realization of the fractional laplacian with nonlocal exterior conditions via forms method. arXiv preprint , (2019). | arXiv | MR | Zbl

[24] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012) 521–573. | DOI | MR | Zbl

[25] S. Dipierro, O. Savin and E. Valdinoci, Local approximation of arbitrary functions by solutions of nonlocal equations. J. Geom. Anal. 29 (2016) 1428–1455. | DOI | MR | Zbl

[26] S. Dipierro, X. Ros-Oton and E. Valdinoci, Nonlocal problems with Neumann boundary conditions. Rev. Mat. Iberoam. 33 (2017) 377–416. | DOI | MR | Zbl

[27] Q. Du, M. Gunzburger, R.B. Lehoucq and K. Zhou, A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws. Math. Models Methods Appl. Sci. 23 (2013) 493–540. | DOI | MR | Zbl

[28] C. Geuzaine and J.-F. Remacle, Gmsh: A 3-d finite element mesh generator with built-in pre-and post-processing facilities. Int. J. Numer. Method Biomed. Eng. 79 (2009) 1309–1331. | DOI | MR | Zbl

[29] T. Ghosh, M. Salo and G. Uhlmann, The calder\’on problem for the fractional schr\” odinger equation. arXiv preprint , (2016). | arXiv | MR | Zbl

[30] T. Ghosh, Y-H. Lin and J. Xiao, The Calderón problem for variable coefficients nonlocal elliptic operators. Commun. Partial Differ. Equ. 42 (2017) 1923–1961. | DOI | MR | Zbl

[31] W. Gong, M. Hinze and Z. Zhou, Finite element method and a priori error estimates for Dirichlet boundary control problems governed by parabolic PDEs. J. Sci. Comput. 66 (2016) 941–967. | DOI | MR | Zbl

[32] G. Grubb, Fractional Laplacians on domains, a development of Hörmander’s theory of μ-transmission pseudodifferential operators. Adv. Math. 268 (2015) 478–528. | DOI | MR | Zbl

[33] G. Grubb, Fractional Laplacians on domains, a development of Hörmander’s theory of μ-transmission pseudodifferential operators. Adv. Math. 268 (2015) 478–528. | DOI | MR | Zbl

[34] M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE constraints, Mathematical Modelling: Theory and Applications, Vol. 23 Springer, New York (2009). | MR | Zbl

[35] N.V. Krylov, On the paper: all functions are locally s-harmonic up to a small error, edited by Dipierro, Savin and Valdinoci, arXiv preprint , (2018). | arXiv | Zbl

[36] Ru-Yu Lai and Yi-Hsuan Lin, Global uniqueness for the fractional semilinear Schrödinger equation. Proc. Amer. Math. Soc. 147 (2019) 1189–1199. | DOI | MR | Zbl

[37] P.A. Larkin and M. Whalen, Direct, near field acoustic testing. Technical report, SAE technical paper (1999).

[38] T. Leonori, I. Peral, A. Primo and F. Soria, Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations. Discrete Contin. Dyn. Syst. 35 (2015) 6031–6068. | DOI | MR | Zbl

[39] C. Louis-Rose and M. Warma, Approximate controllability from the exterior of space-time fractional wave equations. Appl. Math. Optim. (2018) 1–44. | DOI | MR | Zbl

[40] A.S. Lübbe, C. Bergemann, H. Riess, F. Schriever, P. Reichardt, K. Possinger, M. Matthias, B. Dörken, F. Herrmann, R. Gürtler, et al., Clinical experiences with magnetic drug targeting: a phase i study with 4’-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res. 56 (1996) 4686–4693.

[41] R. Nittka, Inhomogeneous parabolic Neumann problems. Czechoslovak Math. J. 64 (2014) 703–742. | DOI | MR | Zbl

[42] X. Ros-Oton and J. Serra, The extremal solution for the fractional Laplacian. Calc. Var. Partial Differ. Equ. 50 (2014) 723–750. | DOI | MR | Zbl

[43] A. Rüland and M. Salo, The fractional Calderón problem: low regularity and stability. arXiv preprint , (2017). | arXiv | MR | Zbl

[44] R. Servadei and E. Valdinoci. On the spectrum of two different fractional operators. Proc. Roy. Soc. Edinburgh Sect. A 144 (2014) 831–855. | DOI | MR | Zbl

[45] M.I. Višik and G.I. Èskin, Convolution equations in a bounded region. Uspehi Mat. Nauk. 20 (1965) 89–152. | MR

[46] M. Warma, A fractional Dirichlet-to-Neumann operator on bounded Lipschitz domains. Commun. Pure Appl. Anal. 14 (2015) 2043–2067. | DOI | MR | Zbl

[47] M. Warma, The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets. Potential Anal. 42 (2015) 499–547. | DOI | MR | Zbl

[48] M. Warma, Approximate controllability from the exterior of space-time fractional diffusive equations. SIAM J. Control Optim. 57 (2019) 2037–2063. | DOI | MR | Zbl

[49] C.J. Weiss, B.G. Van Bloemen Waanders and H. Antil, Fractional operators applied to geophysical electromagnetics. Geophys. J. Int. 220 (2020) 1242–1259.

Cité par Sources :

The first and second authors are partially supported by NSF grants DMS-1818772, DMS-1913004 and the Air Force Office of Scientific Research under Award NO: FA9550-19-1-0036. The third author is partially supported by the Air Force Office of Scientific Research under Award NO: FA9550-18-1-0242.