Non null controllability of Stokes equations with memory
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 72.

In this paper, we consider the null controllability problem for the Stokes equations with a memory term. For any positive final time T > 0, we construct initial conditions such that the null controllability does not hold even if the controls act on the whole boundary. We also prove that this negative result holds for distributed controls.

DOI : 10.1051/cocv/2019067
Classification : 93B05, 93B07, 76D07, 35K10
Mots-clés : Stokes equations with memory, lack of null controllability, observability inequality
@article{COCV_2020__26_1_A72_0,
     author = {Fern\'andez-Cara, Enrique and Machado, Jos\'e Lucas F. and Souza, Diego A.},
     title = {Non null controllability of {Stokes} equations with memory},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019067},
     mrnumber = {4155225},
     zbl = {1451.93023},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2019067/}
}
TY  - JOUR
AU  - Fernández-Cara, Enrique
AU  - Machado, José Lucas F.
AU  - Souza, Diego A.
TI  - Non null controllability of Stokes equations with memory
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2019067/
DO  - 10.1051/cocv/2019067
LA  - en
ID  - COCV_2020__26_1_A72_0
ER  - 
%0 Journal Article
%A Fernández-Cara, Enrique
%A Machado, José Lucas F.
%A Souza, Diego A.
%T Non null controllability of Stokes equations with memory
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2019067/
%R 10.1051/cocv/2019067
%G en
%F COCV_2020__26_1_A72_0
Fernández-Cara, Enrique; Machado, José Lucas F.; Souza, Diego A. Non null controllability of Stokes equations with memory. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 72. doi : 10.1051/cocv/2019067. http://www.numdam.org/articles/10.1051/cocv/2019067/

[1] J.L. Boldrini, A. Doubova, E. Fernández-Cara and M. González-Burgos, Some controllability results for linear viscoelastic fluids. SIAM J. Control Optim. 50 (2012) 900–924. | DOI | MR | Zbl

[2] J.-M. Coron, On the controllability of 2-D incompressible perfect fluids. J. Math. Pures Appl. (9) 75 (1996) 155–188. | MR | Zbl

[3] J.-M. Coron, Control and nonlinearity. Vol. 136 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2007). | MR | Zbl

[4] J.-M. Coron and P. Lissy, Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components. Invent. Math. 198 (2014) 833–880. | DOI | MR | Zbl

[5] J.-M. Coron, F. Marbach and F. Sueur, Small-time global exact controllability of the Navier-Stokes equation with Navier slip-with-friction boundary conditions. J. Eur. Math. Soc. 22 (2020) 1625. | DOI | MR | Zbl

[6] A. Doubova and E. Fernández-Cara, On the control of viscoelastic Jeffreys fluids. Syst. Control Lett. 61 (2012) 573–579. | DOI | MR | Zbl

[7] L.C. Evans, Partial differential equations. In Vol. 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (1998). | MR | Zbl

[8] C. Fabre, J.-P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation. Proc. Roy Soc. Edinburgh: Sect. A 125 (1995) 31–61. | DOI | MR | Zbl

[9] C. Fabre, Uniqueness results for Stokes equations and their consequences in linear and nonlinear control problems. ESAIM: COCV 1 (1996) 267–302. | Numdam | MR | Zbl

[10] E. Fernández-Cara, F. Guillén and R.R. Ortega, Mathematical modeling and analysis of viscoelastic fluids of the Oldroyd kind. Vol. VIII of Handbook of Numerical Analysis. North-, Amsterdam (2002) 543–566. | DOI | MR | Zbl

[11] E. Fernández-Cara, S. Guerrero, O.Y. Imanuvilov and J.-P. Puel, Local exact controllability of the Navier Stokes system. J. Math. Pures Appl. 83 (2004) 1501–1542. | DOI | MR | Zbl

[12] E. Fernández-Cara, S. Guerrero, O.Y. Imanuvilov and J.-P. Puel, Some controllability results for the N-dimensional Navier-Stokes and Boussinesq systems with N-1 scalar controls. SIAM J. Control Optim. 45 (2006) 146–173. | DOI | MR | Zbl

[13] A.V. Fursikov and O.Y. Imanuvilov, Controllability of evolution equations. In Vol. 34 of Lecture Notes Series. Research Institute of Mathematics, Global Analysis Research Center, Seoul National University (1996). | MR | Zbl

[14] A.V. Fursikov and O.Y. Imanuvilov, Exact controllability of the Navier-Stokes and Boussinesq equations. Uspekhi Mat. Nauk 54 (1999) 93–146 (in Russian). Translation in Russian, Math. Surv. 54 (1999) 565–618. | MR | Zbl

[15] O. Glass, Exact boundary controllability of 3-D Euler equation. ESAIM: COCV 5 (2000) 1–44. | Numdam | MR | Zbl

[16] R. Glowinski, J.-L Lions and J. He, Exact and approximate controllability for distributed parameter systems. A numerical approach. Vol. 117 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2008). | MR | Zbl

[17] S. Guerrero and O.Y. Imanuvilov, Remarks on non controllability of the heat equation with memory. ESAIM: COCV 19 (2013) 288–300. | Numdam | MR | Zbl

[18] A. Halanay and L. Pandolfi, Lack of controllability of thermal systems with memory. Evol. Equ. Control Theory 3 (2014) 485–497. | DOI | MR | Zbl

[19] O.Y. Imanuvilov, Boundary controllability of parabolic equations. Russian Acad. Sci. Sb. Math. 186 (1995) 109–132 (in Russian). | MR | Zbl

[20] O.Y. Imanuvilov, Remarks on exact controllability for the Navier-Stokes equations. ESAIM: COCV 6 (2001) 39–72. | Numdam | MR | Zbl

[21] S. Ivanov and L. Pandolfi, Heat equation with memory: lack of controllability to rest. J. Math. Anal. Appl. 355 (2009) 1–11. | DOI | MR | Zbl

[22] D.D. Joseph, Fluid Dynamics of Viscoelastic Liquids. Vol. 84 of Applied Math. Sciences. Springer-Verlag, New York Inc. (1990). | MR | Zbl

[23] J.U. Kim, Control of a second-order integro-differential equation. SIAM J. Control Optim. 31 (1993) 101–110. | DOI | MR | Zbl

[24] I. Lasiecka and R. Triggiani, Exact controllability of semilinear abstract systems with application to waves and plates boundary control problems. Appl. Math. Optim. 23 (1991) 109–154. | DOI | MR | Zbl

[25] G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur. Commun. Partial Differ. Equ. 20 (1995) 335–356. | DOI | MR | Zbl

[26] J.-L. Lions, Exact controllability, stabilizability and perturbations for distributed systems. SIAM Rev. 30 (1988) 1–68. | DOI | MR | Zbl

[27] P.-L. Lions and N. Masmoudi, Global solutions for some Oldroyd models of non-Newtonian flows. Chin. Ann. Math. 21 (2000) 131–146. | DOI | MR | Zbl

[28] L. Lorch and M.E. Muldoon, Monotonic sequences related to zeros of Bessel functions. Numer. Algor. 49 (2008) 221–233. | DOI | MR | Zbl

[29] M. Renardy, Are viscoelastic flows under control or out of control? Syst. Control Lett. 54 (2005) 1183–1193. | DOI | MR | Zbl

[30] M. Renardy, A note on a class of observability problems for PDEs. Syst. Control Lett. 58 (2009) 183–187. | DOI | MR | Zbl

[31] M. Renardy, Global existence of solutions for shear flow of certain viscoelastic fluids. J. Math. Fluid Mech. 11 (2009) 91–99. | DOI | MR | Zbl

[32] M. Renardy, W. Hrusa and J.A. Nohel, Mathematical Problems in Viscoelasticity, in vol. 32 of Pitman Monographs and Surveys in Pure and Applied Mathematics. Longman Scientific & Technical. Harlow; John Wiley & Sons, Inc., New York (1987). | MR | Zbl

[33] D.L. Russell, A unified boundary controllability theory for hyperbolic and parabolic partial differential equations. Stud. Appl. Math. 52 (1973) 189–221. | DOI | MR | Zbl

[34] D.L. Russell, Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions. SIAM Rev. 20 (1978) 639–739. | DOI | MR | Zbl

[35] T.I. Seidman, Exact boundary control for some evolution equations. SIAM J. Control Optim. 16 (1978) 979–999. | DOI | MR | Zbl

[36] R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis. North-Holland, Amsterdam (1977). | MR | Zbl

[37] X. Zhou and H. Gao, Interior approximate and null controllability of the heat equation with memory. Comp. Math. Appl. 67 (2014) 602–613. | DOI | MR | Zbl

[38] E. Zuazua, Finite dimensional null controllability for the semilinear heat equation. J. Math. Pures Appl. 76 (1997) 237–264. | DOI | MR | Zbl

Cité par Sources :