Internal null controllability of the generalized Hirota-Satsuma system
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 75.

The generalized Hirota-Satsuma system consists of three coupled nonlinear Korteweg-de Vries (KdV) equations. By using two distributed controls it is proven in this paper that the local null controllability property holds when the system is posed on a bounded interval. First, the system is linearized around the origin obtaining two decoupled subsystems of third order dispersive equations. This linear system is controlled with two inputs, which is optimal. This is done with a duality approach and some appropriate Carleman estimates. Then, by means of an inverse function theorem, the local null controllability of the nonlinear system is proven.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2019062
Classification : 35Q35, 93B05, 93C20, 93C10
Mots-clés : Korteweg-de Vries equation, null controllability, Carleman estimates
@article{COCV_2020__26_1_A75_0,
     author = {Carre\~no, Nicol\'as and Cerpa, Eduardo and Cr\'epeau, Emmanuelle},
     title = {Internal null controllability of the generalized {Hirota-Satsuma} system},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019062},
     mrnumber = {4155228},
     zbl = {1451.35157},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2019062/}
}
TY  - JOUR
AU  - Carreño, Nicolás
AU  - Cerpa, Eduardo
AU  - Crépeau, Emmanuelle
TI  - Internal null controllability of the generalized Hirota-Satsuma system
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2019062/
DO  - 10.1051/cocv/2019062
LA  - en
ID  - COCV_2020__26_1_A75_0
ER  - 
%0 Journal Article
%A Carreño, Nicolás
%A Cerpa, Eduardo
%A Crépeau, Emmanuelle
%T Internal null controllability of the generalized Hirota-Satsuma system
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2019062/
%R 10.1051/cocv/2019062
%G en
%F COCV_2020__26_1_A75_0
Carreño, Nicolás; Cerpa, Eduardo; Crépeau, Emmanuelle. Internal null controllability of the generalized Hirota-Satsuma system. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 75. doi : 10.1051/cocv/2019062. http://www.numdam.org/articles/10.1051/cocv/2019062/

[1] V.M. Alekseev, V.M. Tikhomirov and S.V. Fomin, Optimal control. Translated from the Russian by V. M. Volosov. Contemporary Soviet Mathematics, Consultants Bureau, New York (1987). | MR | Zbl

[2] K. Ammari and E. Crépeau, Feedback stabilization and boundary controllability of the Korteweg–de Vries equation on a star-shaped network. SIAM J. Control Optim. 56 (2018) 1620–1639. | DOI | MR | Zbl

[3] F.D. Araruna, E. Cerpa, A. Mercado and M.C. Santos, Internal null controllability of a linear Schrödinger-KdV system on a bounded interval. J. Differ. Equ. 260 (2016) 653–687. | DOI | MR | Zbl

[4] J. Bergh and J. Löfström, Interpolation spaces. An introduction. Grundlehren der Mathematischen Wissenschaften, No. 223. Springer-Verlag, Berlin-New York (1976). | MR | Zbl

[5] R.A. Capistrano-Filho, A.F. Pazoto and L. Rosier, Internal controllability of the Korteweg–de Vries equation on a bounded domain. ESAIM: COCV 21 (2015) 1076–1107. | Numdam | MR | Zbl

[6] R.A. Capistrano-Filho, F.A. Gallego and A.F. Pazoto, Neumann boundary controllability of the Gear-Grimshaw system with critical size restrictions on the spatial domain. Z. Angew. Math. Phys. 67 (2016) 109. | DOI | MR | Zbl

[7] R.A. Capistrano-Filho, F.A. Gallego and A.F. Pazoto, Boundary controllability of a nonlinear coupled system of two Korteweg–de Vries equations with critical size restrictions on the spatial domain. Math. Control Signals Syst. 29 (2017) 6. | DOI | MR | Zbl

[8] E. Cerpa and A.F. Pazoto, A note on the paper “On the controllability of a coupled system of two Korteweg-de Vries equations” [mr2561938]. Commun. Contemp. Math. 13 (2011) 183–189. | DOI | MR | Zbl

[9] E. Cerpa, E. Crépeau and C. Moreno, On the boundary controllability of the Korteweg-de Vries equation on a star-shaped network. IMA J. Math. Control Inform. 37 (2020) 226–240. | MR | Zbl

[10] J.-M. Coron and J.-P. Guilleron, Control of three heat equations coupled with two cubic nonlinearities. SIAM J. Control Optim. 55 (2017) 989–1019. | DOI | MR | Zbl

[11] J.-M. Coron, S. Guerrero and L. Rosier, Null controllability of a parabolic system with a cubic coupling term. SIAM J. Control Optim. 48 (2010) 5629–5653. | DOI | MR | Zbl

[12] A.V. Fursikov and O.Y. Imanuvilov, Controllability of evolution equations. In Vol. 34 of Lecture Notes Series. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul (1996). | MR | Zbl

[13] X. Geng, H. Ren and G. He, Darboux transformation for a generalized Hirota-Satsuma coupled Korteweg-de Vries equation. Phys. Rev. E 79 (2009) 056602. | DOI | MR

[14] O. Glass and S. Guerrero, Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit. Asymptot. Anal. 60 (2008) 61–100. | MR | Zbl

[15] R. Hirota and J. Satsuma, Soliton solutions of a coupled Korteweg-de Vries equation. Phys. Lett. A 85 (1981) 407–408. | DOI | MR

[16] C. Laurent, L. Rosier and B.-Y. Zhang, Control and stabilization of the Korteweg-de Vries equation on a periodic domain. Commun. Partial Differ. Equ. 35 (2010) 707–744. | DOI | MR | Zbl

[17] S. Micu, J.H. Ortega and A.F. Pazoto, On the controllability of a coupled system of two Korteweg-de Vries equations. Commun. Contemp. Math. 11 (2009) 799–827. | DOI | MR | Zbl

[18] S. Micu, J.H. Ortega, L. Rosier and B.-Y. Zhang, Control and stabilization of a family of Boussinesq systems. Discrete Contin. Dyn. Syst. 24 (2009) 273–313. | DOI | MR | Zbl

[19] L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain. ESAIM: COCV 2 (1997) 33–55. | Numdam | MR | Zbl

[20] D.L. Russell and B.Y. Zhang, Controllability and stabilizability of the third-order linear dispersion equation on a periodic domain. SIAM J. Control Optim. 31 (1993) 659–676. | DOI | MR | Zbl

[21] D.L. Russell and B.Y. Zhang, Exact controllability and stabilizability of the Korteweg-de Vries equation. Trans. Amer. Math. Soc. 348 (1996) 3643–3672. | DOI | MR | Zbl

[22] J. Satsuma and R. Hirota, A coupled KdV equation is one case of the four-reduction of the KP hierarchy. J. Phys. Soc. Jpn. 51 (1982) 3390–3397. | DOI | MR

[23] L. Xue, Q.P. Liu and D. Wang, A generalized Hirota-Satsuma coupled KdV system: Darboux transformations and reductions. J. Math. Phys. 57 (2016) 083506. | DOI | MR | Zbl

[24] C. Zhang, Internal controllability of systems of semilinear coupled one-dimensional wave equations with one control. SIAM J. Control Optim. 56 (2018) 3092–3127. | DOI | MR | Zbl

Cité par Sources :

This work has been partially supported by FONDECYT 11170489 (N. Carreño), FONDECYT 1180528 (E. Cerpa), Math-Amsud ICoPS 17-MATH-04 and Basal Project FB0008 AC3E.