The generalized Hirota-Satsuma system consists of three coupled nonlinear Korteweg-de Vries (KdV) equations. By using two distributed controls it is proven in this paper that the local null controllability property holds when the system is posed on a bounded interval. First, the system is linearized around the origin obtaining two decoupled subsystems of third order dispersive equations. This linear system is controlled with two inputs, which is optimal. This is done with a duality approach and some appropriate Carleman estimates. Then, by means of an inverse function theorem, the local null controllability of the nonlinear system is proven.
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2019062
Mots-clés : Korteweg-de Vries equation, null controllability, Carleman estimates
@article{COCV_2020__26_1_A75_0, author = {Carre\~no, Nicol\'as and Cerpa, Eduardo and Cr\'epeau, Emmanuelle}, title = {Internal null controllability of the generalized {Hirota-Satsuma} system}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, publisher = {EDP-Sciences}, volume = {26}, year = {2020}, doi = {10.1051/cocv/2019062}, mrnumber = {4155228}, zbl = {1451.35157}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2019062/} }
TY - JOUR AU - Carreño, Nicolás AU - Cerpa, Eduardo AU - Crépeau, Emmanuelle TI - Internal null controllability of the generalized Hirota-Satsuma system JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2020 VL - 26 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2019062/ DO - 10.1051/cocv/2019062 LA - en ID - COCV_2020__26_1_A75_0 ER -
%0 Journal Article %A Carreño, Nicolás %A Cerpa, Eduardo %A Crépeau, Emmanuelle %T Internal null controllability of the generalized Hirota-Satsuma system %J ESAIM: Control, Optimisation and Calculus of Variations %D 2020 %V 26 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2019062/ %R 10.1051/cocv/2019062 %G en %F COCV_2020__26_1_A75_0
Carreño, Nicolás; Cerpa, Eduardo; Crépeau, Emmanuelle. Internal null controllability of the generalized Hirota-Satsuma system. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 75. doi : 10.1051/cocv/2019062. http://www.numdam.org/articles/10.1051/cocv/2019062/
[1] Optimal control. Translated from the Russian by V. M. Volosov. Contemporary Soviet Mathematics, Consultants Bureau, New York (1987). | MR | Zbl
, and ,[2] Feedback stabilization and boundary controllability of the Korteweg–de Vries equation on a star-shaped network. SIAM J. Control Optim. 56 (2018) 1620–1639. | DOI | MR | Zbl
and ,[3] Internal null controllability of a linear Schrödinger-KdV system on a bounded interval. J. Differ. Equ. 260 (2016) 653–687. | DOI | MR | Zbl
, , and ,[4] Interpolation spaces. An introduction. Grundlehren der Mathematischen Wissenschaften, No. 223. Springer-Verlag, Berlin-New York (1976). | MR | Zbl
and ,[5] Internal controllability of the Korteweg–de Vries equation on a bounded domain. ESAIM: COCV 21 (2015) 1076–1107. | Numdam | MR | Zbl
, and ,[6] Neumann boundary controllability of the Gear-Grimshaw system with critical size restrictions on the spatial domain. Z. Angew. Math. Phys. 67 (2016) 109. | DOI | MR | Zbl
, and ,[7] Boundary controllability of a nonlinear coupled system of two Korteweg–de Vries equations with critical size restrictions on the spatial domain. Math. Control Signals Syst. 29 (2017) 6. | DOI | MR | Zbl
, and ,[8] A note on the paper “On the controllability of a coupled system of two Korteweg-de Vries equations” [mr2561938]. Commun. Contemp. Math. 13 (2011) 183–189. | DOI | MR | Zbl
and ,[9] On the boundary controllability of the Korteweg-de Vries equation on a star-shaped network. IMA J. Math. Control Inform. 37 (2020) 226–240. | MR | Zbl
, and ,[10] Control of three heat equations coupled with two cubic nonlinearities. SIAM J. Control Optim. 55 (2017) 989–1019. | DOI | MR | Zbl
and ,[11] Null controllability of a parabolic system with a cubic coupling term. SIAM J. Control Optim. 48 (2010) 5629–5653. | DOI | MR | Zbl
, and ,[12] Controllability of evolution equations. In Vol. 34 of Lecture Notes Series. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul (1996). | MR | Zbl
and ,[13] Darboux transformation for a generalized Hirota-Satsuma coupled Korteweg-de Vries equation. Phys. Rev. E 79 (2009) 056602. | DOI | MR
, and ,[14] Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit. Asymptot. Anal. 60 (2008) 61–100. | MR | Zbl
and ,[15] Soliton solutions of a coupled Korteweg-de Vries equation. Phys. Lett. A 85 (1981) 407–408. | DOI | MR
and ,[16] Control and stabilization of the Korteweg-de Vries equation on a periodic domain. Commun. Partial Differ. Equ. 35 (2010) 707–744. | DOI | MR | Zbl
, and ,[17] On the controllability of a coupled system of two Korteweg-de Vries equations. Commun. Contemp. Math. 11 (2009) 799–827. | DOI | MR | Zbl
, and ,[18] Control and stabilization of a family of Boussinesq systems. Discrete Contin. Dyn. Syst. 24 (2009) 273–313. | DOI | MR | Zbl
, , and ,[19] Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain. ESAIM: COCV 2 (1997) 33–55. | Numdam | MR | Zbl
,[20] Controllability and stabilizability of the third-order linear dispersion equation on a periodic domain. SIAM J. Control Optim. 31 (1993) 659–676. | DOI | MR | Zbl
and ,[21] Exact controllability and stabilizability of the Korteweg-de Vries equation. Trans. Amer. Math. Soc. 348 (1996) 3643–3672. | DOI | MR | Zbl
and ,[22] A coupled KdV equation is one case of the four-reduction of the KP hierarchy. J. Phys. Soc. Jpn. 51 (1982) 3390–3397. | DOI | MR
and ,[23] A generalized Hirota-Satsuma coupled KdV system: Darboux transformations and reductions. J. Math. Phys. 57 (2016) 083506. | DOI | MR | Zbl
, and ,[24] Internal controllability of systems of semilinear coupled one-dimensional wave equations with one control. SIAM J. Control Optim. 56 (2018) 3092–3127. | DOI | MR | Zbl
,Cité par Sources :
This work has been partially supported by FONDECYT 11170489 (N. Carreño), FONDECYT 1180528 (E. Cerpa), Math-Amsud ICoPS 17-MATH-04 and Basal Project FB0008 AC3E.