This paper is concerned with the control properties of the Korteweg–de Vries (KdV) equation posed on a bounded interval with a distributed control. When the control region is an arbitrary open subdomain , we prove the null controllability of the KdV equation by means of a new Carleman inequality. As a consequence, we obtain a regional controllability result, which roughly tells us that any target function arbitrarily chosen on and null on is reachable. Finally, when the control region is a neighborhood of the right endpoint, an exact controllability result in a weighted -space is also established.
DOI : 10.1051/cocv/2014059
Mots clés : KdV equation, Carleman estimate, null controllability, exact controllability
@article{COCV_2015__21_4_1076_0, author = {Capistrano{\textendash}Filho, Roberto A. and Pazoto, Ademir F. and Rosier, Lionel}, title = {Internal controllability of the korteweg{\textendash}de vries equation on a bounded domain}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1076--1107}, publisher = {EDP-Sciences}, volume = {21}, number = {4}, year = {2015}, doi = {10.1051/cocv/2014059}, mrnumber = {3395756}, zbl = {1331.35302}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2014059/} }
TY - JOUR AU - Capistrano–Filho, Roberto A. AU - Pazoto, Ademir F. AU - Rosier, Lionel TI - Internal controllability of the korteweg–de vries equation on a bounded domain JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2015 SP - 1076 EP - 1107 VL - 21 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2014059/ DO - 10.1051/cocv/2014059 LA - en ID - COCV_2015__21_4_1076_0 ER -
%0 Journal Article %A Capistrano–Filho, Roberto A. %A Pazoto, Ademir F. %A Rosier, Lionel %T Internal controllability of the korteweg–de vries equation on a bounded domain %J ESAIM: Control, Optimisation and Calculus of Variations %D 2015 %P 1076-1107 %V 21 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2014059/ %R 10.1051/cocv/2014059 %G en %F COCV_2015__21_4_1076_0
Capistrano–Filho, Roberto A.; Pazoto, Ademir F.; Rosier, Lionel. Internal controllability of the korteweg–de vries equation on a bounded domain. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 4, pp. 1076-1107. doi : 10.1051/cocv/2014059. http://www.numdam.org/articles/10.1051/cocv/2014059/
R.A. Adams, Sobolev Spaces, 1st edition. Academic Press, New York, San Francisco London, 1st edition (1975). | MR | Zbl
J. Bergh and J. Löfström, Interpolation spaces. An introduction. Grundlehren der Mathematishen Wissenschaften, No. 223. Springer-Verlag, Berlin New York (1976). | MR | Zbl
Essai sur la théorie des eaux courantes, Mémoires présentés par divers savants à l’Acad. Sci. Inst. Nat. France 23 (1877) 1–680. | JFM
,Exact controllability of a nonlinear Korteweg–de Vries equation on a critical spatial domain. SIAM J. Control Optim. 46 (2007) 877–899. | DOI | MR | Zbl
,Boundary controllability for the nonlinear Korteweg–de Vries equation on any critical domain. Ann. Institut Henri Poincaré 26 (2009) 457–475. | DOI | Numdam | MR | Zbl
and ,Exact boundary controllability of a nonlinear KdV equation with a critical length. J. Eur. Math. Soc. 6 (2004) 367–398. | DOI | MR | Zbl
and ,A general theory of observation and control. SIAM J. Control Optim. 15 (1977) 185–220. | DOI | MR | Zbl
and ,Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit. Asymptot. Anal. 60 (2008) 61–100. | MR | Zbl
and ,Controllability of the Korteweg–de Vries equation from the right Dirichlet boundary condition. Systems Control Lett. 59 (2010) 390–395. | DOI | MR | Zbl
and ,On the dual Petrov-Galerkin formulation of the KdV equation on a finite interval. Adv. Differ. Equ. 12 (2007) 221–239. | MR | Zbl
and ,L. Hörmander, Lectures on Nonlinear Hyperbolic Differential Equations. Vol. 26 of Math. Appl. Springer-Verlag (1997). | MR | Zbl
A bilinear estimate with applications to the KdV equation. J. Amer. Math. Soc. 9 (1996) 573–603. | DOI | MR | Zbl
, and ,On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves. Philos. Mag. 39 (1895) 422–443. | DOI | JFM | MR
and ,Control and stabilization of the Korteweg–de Vries equation on a periodic domain. Commun. Partial Differ. Equ. 35 (2010) 707–744. | DOI | MR | Zbl
, and ,Exact controllability, stabilization and perturbations for distributed systems. SIAM Reviews 30 (1988) 1–68. | DOI | MR | Zbl
,J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1 of Travaux et Recherches Mathématiques. Dunod, Paris (1968) 17. | Zbl
Inverse problems for the Schrödinger equation via Carleman inequalities with degenerate weights. Inverse Prob. 24 (2008) 015017. | DOI | MR | Zbl
, and ,The Korteweg–de Vries equation: A survey of results. SIAM Reviews 18 (1976) 412–459. | DOI | MR | Zbl
,Stabilization of the Korteweg–de Vries equation with localized damping. Quart. Appl. Math. 60 (2002) 111–129. | DOI | MR | Zbl
, and ,Exact boundary controllability for the Korteweg–de Vries equation on a bounded domain. ESAIM: COCV 2 (1997) 33–55. | Numdam | MR | Zbl
,Exact boundary controllability for the linear Korteweg–de Vries equation on the half-line. SIAM J. Control Optim. 39 (2000) 331–351. | DOI | MR | Zbl
,Control of the surface of a fluid by a wavemaker. ESAIM: COCV 10 (2004) 346–380. | Numdam | MR | Zbl
,Null controllability of the complex Ginzburg–Landau equation. Ann. Institut Henri Poincaré Anal. Non Linéaire 26 (2009) 649–673. | DOI | Numdam | MR | Zbl
and ,Control and stabilization of the Korteweg–de Vries equation: Recent progresses. J. Syst. Sci. Complexity 22 (2009) 647–682. | DOI | MR | Zbl
and ,Exact controllability and stabilizability of the Korteweg–de Vries equation. Trans. Amer. Math. Soc. 348 (1996) 3643–3672. | DOI | MR | Zbl
and ,Remarks on the Korteweg–de Vries equation. Israel J. Math. 24 (1976) 78–87. | DOI | MR | Zbl
and ,E. Zeidler, Nonlinear functional analysis and its applications I. Springer-Verlag, New York (1986). | MR | Zbl
Exact boundary controllability of the Korteweg–de Vries equation. SIAM J. Cont. Optim. 37 (1999) 543–565. | DOI | MR | Zbl
,Cité par Sources :