Controllability of low Reynolds numbers swimmers of ciliate type
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 31.

We study the locomotion of a ciliated microorganism in a viscous incompressible fluid. We use the Blake ciliated model: the swimmer is a rigid body with tangential displacements at its boundary that allow it to propel in a Stokes fluid. This can be seen as a control problem: using periodical displacements, is it possible to reach a given position and a given orientation? We are interested in the minimal dimension d of the space of controls that allows the microorganism to swim. Our main result states the exact controllability with d = 3 generically with respect to the shape of the swimmer and with respect to the vector fields generating the tangential displacements. The proof is based on analyticity results and on the study of the particular case of a spheroidal swimmer.

DOI : 10.1051/cocv/2019010
Classification : 74F10, 93B27, 76B75, 76D07
Mots-clés : Fluid–structure interaction, locomotion, biomechanics, Stokes fluid, geometric control theory
@article{COCV_2020__26_1_A31_0,
     author = {Loh\'eac, J\'er\^ome and Takahashi, Tak\'eo},
     title = {Controllability of low {Reynolds} numbers swimmers of ciliate type},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019010},
     mrnumber = {4082470},
     zbl = {1434.74049},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2019010/}
}
TY  - JOUR
AU  - Lohéac, Jérôme
AU  - Takahashi, Takéo
TI  - Controllability of low Reynolds numbers swimmers of ciliate type
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2019010/
DO  - 10.1051/cocv/2019010
LA  - en
ID  - COCV_2020__26_1_A31_0
ER  - 
%0 Journal Article
%A Lohéac, Jérôme
%A Takahashi, Takéo
%T Controllability of low Reynolds numbers swimmers of ciliate type
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2019010/
%R 10.1051/cocv/2019010
%G en
%F COCV_2020__26_1_A31_0
Lohéac, Jérôme; Takahashi, Takéo. Controllability of low Reynolds numbers swimmers of ciliate type. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 31. doi : 10.1051/cocv/2019010. http://www.numdam.org/articles/10.1051/cocv/2019010/

[1] F. Alouges and L. Giraldi, Enhanced controllability of low Reynolds number swimmers in the presence of a wall. Acta Appl. Math. 128 (2013) 153–179. | DOI | MR | Zbl

[2] F. Alouges, A. Desimone and A. Lefebvre, Optimal strokes for low Reynolds number swimmers: an example. J. Nonlin. Sci. 18 (2008) 277–302. | DOI | MR | Zbl

[3] F. Alouges, A. Desimone, L. Heltai, A. Lefebvre-Lepot and B. Merlet, Optimally swimming Stokesian robots. Discrete Contin. Dyn. Syst. Ser. B 18 (2013) 1189–1215. | MR | Zbl

[4] J.R. Blake, A spherical envelope approach to ciliary propulsion. J. Fluid Mech. 46 (1971) 199–208. | DOI | Zbl

[5] J.R. Blake, A finite model for ciliated micro-organisms. J. Biomech. 6 (1973) 133–140. | DOI

[6] H. Brenner, The Stokes resistance of a slightly deformed sphere. Chem. Eng. Sci. 19 (1964) 519–539. | DOI

[7] A. Bressan, Impulsive control of Lagrangian systems and locomotion in fluids. Discrete Contin. Dyn. Syst. 20 (2008) 1–35. | DOI | MR | Zbl

[8] J. Cerf, Topologie de certains espaces de plongements. Bull. Soc. Math. Fr. 89 (1961) 227–380. | DOI | Numdam | MR | Zbl

[9] J. Cerf, Sur les difféomorphismes de la sphère de dimension trois Γ 4 = 0 . Vol. 53 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, Heidelberg, New York (1968) XII, 133. | MR | Zbl

[10] L. Cesari, Optimization – Theory and Applications: Problems with Ordinary Differential Equations. Vol. 17 of Applications of Mathematics. Springer-Verlag, New York, Heidelberg, Berlin (1983). | MR | Zbl

[11] T. Chambrion and A. Munnier, Locomotion and control of a self-propelled shape-changing body in a fluid. J. Nonlin. Sci. 21 (2011) 325–385. | DOI | MR | Zbl

[12] T. Chambrion and A. Munnier, Generic controllability of 3D swimmers in a perfect fluid. SIAM J. Control Optim. 50 (2012) 2814–2835. | DOI | MR | Zbl

[13] T. Chambrion, L. Giraldi and A. Munnier, Optimal strokes for driftless swimmers: a general geometric approach. ESAIM: COCV 25 (2019) 6. | Numdam | MR | Zbl

[14] S. Childress, Mechanics of Swimming and Flying. Vol. 2 of Cambridge Studies in Mathematical Biology. Cambridge University Press, Cambridge (1981). | MR | Zbl

[15] R. Courant and D. Hilbert, Methods of Mathematical Physics Volume 1 – First English Edition Translated and Revised from the German Original, Reprint of the 1st Engl. edn. 1953. John Wiley & Sons, New York (1989). | Zbl

[16] G. Dal Maso, A. Desimone and M. Morandotti, An existence and uniqueness result for the motion of self-propelled microswimmers. SIAM J. Math. Anal. 43 (2011) 1345–1368. | DOI | MR | Zbl

[17] G.P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems, 2nd edn. Springer, New York, NY (2011). | MR | Zbl

[18] D. Gérard-Varet and L. Giraldi, Rough wall effect on micro-swimmers. ESAIM: COCV 21 (2015) 757–788. | Numdam | MR | Zbl

[19] J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media, 2nd rev. edn., 4th printing. Vol. 1 of Mechanics of Fluids and Transport Processes. Martinus Nijhoff Publishers, a member of the Kluwer Academic Publishers Group, Dordrecht, Boston, Lancaster (1986). | Zbl

[20] V. Jurdjevic, Geometric Control Theory. Cambridge University Press, Cambridge (1997). | MR | Zbl

[21] H. Lamb, Hydrodynamics, 6th edn. Cambridge University Press, Cambridge (1932). | MR | Zbl

[22] S. Lang, Fundamentals of Differential Geometry, Corr. 2nd printing edition. Springer, New York, NY (2001). | MR | Zbl

[23] D. Lehmann and C. Sacre, Géométrie et Topologie des Surfaces, Mathematiques. Presses Universitaires de France, Paris (1982). | MR | Zbl

[24] J. Lohéac and A. Munnier, Controllability of 3D low Reynolds number swimmers. ESAIM: COCV 20 (2014) 236–268. | Numdam | MR | Zbl

[25] J. Lohéac, J.-F. Scheid and M. Tucsnak, Controllability and time optimal control for low Reynolds numbers swimmers. Acta Appl. Math. 123 (2013) 175–200. | DOI | MR | Zbl

[26] S. Michelin and E. Lauga, Efficiency optimization and symmetry-breaking in a model of ciliary locomotion. Phys. Fluids 22 (2010) 111901. | DOI

[27] S. Michelin and E. Lauga, Unsteady feeding and optimal strokes of model ciliates. J. Fluid Mech. 715 (2013) 1–31. | DOI | MR | Zbl

[28] M. Monera, A. Montesinos-Amilibia and E. Sanabria-Codesal, The Taylor expansion of the exponential map and geometric applications. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 108 (2014) 881–906. | DOI | MR | Zbl

[29] A. Munnier, On the self-displacement of deformable bodies in a potential fluid flow. Math. Models Methods Appl. Sci. 18 (2008) 1945–1981. | DOI | MR | Zbl

[30] A. Munnier and T. Chambrion, Generalized scallop theorem for linear swimmers. Preprint (2010). | arXiv

[31] A. Najafi and R. Golestanian, Simple swimmer at low Reynolds number: three linked spheres. Phys. Rev. E 69 (2004) 062901. | DOI

[32] E.M. Purcell, Life at low Reynolds number. Am. J. Phys. 45 (1977) 3–11. | DOI

[33] J. San Martín, T. Takahashi and M. Tucsnak, A control theoretic approach to the swimming of microscopic organisms. Quart. Appl. Math. 65 (2007) 405–424. | DOI | MR | Zbl

[34] J. San Martín, T. Takahashi and M. Tucsnak. An optimal control approach to ciliary locomotion. Math. Control Relat. Fields 6 (2016) 293–334. | DOI | MR | Zbl

[35] D. Serre, Chute libre d’un solide dans un fluide visqueux incompressible existence. Jpn. J. Appl. Math. 4 (1987) 99–110. | DOI | MR | Zbl

[36] M. Sigalotti and J.-C. Vivalda, Controllability properties of a class of systems modeling swimming microscopic organisms. ESAIM: COCV 16 (2010) 1053–1076. | Numdam | MR | Zbl

[37] G. Taylor, Analysis of the swimming of microscopic organisms. Proc. R. Soc. Lond. Ser. A 209 (1951) 447–461. | DOI | MR | Zbl

[38] E. Whittlesey, Analytic functions in Banach spaces. Proc. Am. Math. Soc. 16 (1965) 1077–1083. | DOI | MR | Zbl

Cité par Sources :