Rough wall effect on micro-swimmers
ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 3, pp. 757-788.

We study the effect of a rough wall on the controllability of micro-swimmers made of several balls linked by thin jacks: the so-called 3-sphere and 4-sphere swimmers. Our work completes the previous work [F. Alouges and L. Giraldi, Acta Applicandae Mathematicae 128 (2013) 153–179] dedicated to the effect of a flat wall. We show that a controllable swimmer (the 4-sphere swimmer) is not impacted by the roughness. On the contrary, we show that the roughness changes the dynamics of the 3-sphere swimmer, so that it can reach any direction almost everywhere.

Reçu le :
DOI : 10.1051/cocv/2014046
Classification : 93B05
Mots-clés : Low-Reynolds number swimming, self-propulsion, three-sphere swimmer, rough wall effect, Lie brackets, control theory, asymptotic expansion
Gérard-Varet, David 1 ; Giraldi, Laetitia 2

1 Institut de Mathématiques de Jussieu et Université Paris 7, Bâtiment Sophie Germain, 75205 Paris cedex 13, France
2 Unité de Mathématiques Appliqueés (UMA), École Nationale Supérieure de Techniques Avancées (ENSTA-Paristech), 828 Boulevard des Marchaux, 91762 Palaiseau, France
@article{COCV_2015__21_3_757_0,
     author = {G\'erard-Varet, David and Giraldi, Laetitia},
     title = {Rough wall effect on micro-swimmers},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {757--788},
     publisher = {EDP-Sciences},
     volume = {21},
     number = {3},
     year = {2015},
     doi = {10.1051/cocv/2014046},
     zbl = {1315.93015},
     mrnumber = {3358629},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2014046/}
}
TY  - JOUR
AU  - Gérard-Varet, David
AU  - Giraldi, Laetitia
TI  - Rough wall effect on micro-swimmers
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2015
SP  - 757
EP  - 788
VL  - 21
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2014046/
DO  - 10.1051/cocv/2014046
LA  - en
ID  - COCV_2015__21_3_757_0
ER  - 
%0 Journal Article
%A Gérard-Varet, David
%A Giraldi, Laetitia
%T Rough wall effect on micro-swimmers
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2015
%P 757-788
%V 21
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2014046/
%R 10.1051/cocv/2014046
%G en
%F COCV_2015__21_3_757_0
Gérard-Varet, David; Giraldi, Laetitia. Rough wall effect on micro-swimmers. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 3, pp. 757-788. doi : 10.1051/cocv/2014046. http://www.numdam.org/articles/10.1051/cocv/2014046/

F. Alouges, A. Desimone and A. Lefebvre, Optimal strokes for low Reynolds number swimmers : an example. J. Nonlinear Sci. 18 (2008) 277–302. | DOI | MR | Zbl

F. Alouges and L. Giraldi, Enhanced controllability of low Reynolds number swimmers in the presence of a wall. Acta Applicandae Mathematicae 128 (2013) 153–179. | DOI | MR | Zbl

F. Alouges, A. Desimone, L. Giraldi and M. Zoppello, Self-propulsion of slender micro-swimmers by curvature control: N-link swimmers. J. Non-Linear Mech. 56 (2013) 132–141. | DOI

F. Alouges, A. Desimone, L. Heltai, A. Lefebvre and B. Merlet, Optimally swimming Stokesian robots. Discrete Contin. Dyn. Syst. Ser. B 18 (2013). | MR | Zbl

A.P. Berke, L. Turner, H.C. Berg and E. Lauga, Hydrodynamic attraction of swimming microorganisms by surfaces. Phys. Rev. Lett. 101 (2008). | DOI

J.R. Blake, A note on the image system for a Stokeslet in a no-slip boundary. Math. Proc. Cambridge Philos. Soc. 70 (1971) 303. | DOI | Zbl

T. Chambrion and A. Munnier, Locomotion and control of a self-propelled shape-changing body in a fluid. J. Nonlinear Sci. 21 (2011) 325–385. | DOI | MR | Zbl

J.M. Coron, Control and Nonlinearity. American Mathematical Society (2007). | MR | Zbl

G.P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stockes Equations. Springer (2011). | MR | Zbl

D. Gérard Varet and M. Hillairet, Computation of the drag force on a rough sphere close to a wall. ESAIM: M2AN 46 (2012) 1201–1224. | DOI | Numdam | MR | Zbl

L. Giraldi, P. Martinon and M. Zoppello, Controllability and optimal strokes for N-link micro-swimmer. Proc. of 52th Conf. on Decision and Control (Florence, Italy) (2013).

R. Golestanian and A. Ajdari, Analytic results for the three-sphere swimmer at low Reynolds. Phys. Rev. E 77 (2008) 036308. | DOI

A. Henrot and M. Pierre, Variation et optimisation de formes. Une analyse géométrique. [A geometric analysis]. Vol. 48 of Math. Appl. Springer, Berlin, 2001. | MR | Zbl

V. Jurdjevic, Geometric control theory. Cambridge University Press (1997). | MR | Zbl

E. Lauga and T. Powers, The hydrodynamics of swimming micro-organisms. Rep. Prog. Phys. 72 (2009) 09660. | DOI | MR

R. Ledesma-Aguilar and J.M. Yeomans, Enhanced motility of a microswimmer in rigid and elastic confinement. Phys. Rev. Lett. 111 (2013) 138101. | DOI

J. Lighthill, Mathematical biofluiddynamic. Soc. Ind. Appl. Math. Philadelphia, Pa. (1975) | MR | Zbl

J. Lohéac and A. Munnier, Controllability of 3D low Reynolds swimmers. ESAIM: COCV 20 (2014) 236–268. | Numdam | MR | Zbl

J. Lohéac, J.F. Scheid and M. Tucsnak, Controllability and time optimal control for low Reynolds numbers swimmers. Acta Appl. Math. 123 (2013) 175–200. | DOI | MR | Zbl

R. Montgomery, A tour of subriemannian geometries, theirs geodesics and applications. American Mathematical Society (2002). | MR | Zbl

A. Najafi and R. Golestanian, Simple swimmer at low Reynolds number: Three linked spheres. Phys. Rev. E 69 (2004) 062901. | DOI

Y. Or and M. Murray, Dynamics and stability of a class of low Reynolds number swimmers near a wall. Phys. Rev. E 79 (2009) 045302. | DOI

E.M. Purcell, Life at low Reynolds number. Am. J. Phys. 45 (1977) 3–11. | DOI

S.H. Rad and A. Najafi, Hydrodynamic interactions of spherical particles in a fluid confined by a rough no-slip wall. Phys. Rev. E 82 (2010) 036305. | DOI

L. Rothschild, Non-random distribution of bull spermatozoa in a drop of sperm suspension. Nature (1963).

D.J. Smith and J.R. Blake, Surface accumulation of spermatozoa: a fluid dynamic phenomenon. Math. Sci. 34 (2009) 74–87. | MR | Zbl

D.J. Smith, E.A. Gaffney, J.R. Blake and J.C. Kirkman-Brown, Human sperm accumulation near surfaces: a simulation study. J. Fluid Mech. 621 (2009) 289–320. | DOI | Zbl

G. Taylor, Analysis of the swimming of microscopic organisms. Proc. R. Soc. London A 209 (1951) 447–461. | DOI | MR | Zbl

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis. AMS, Chelsea (2005). | MR | Zbl

E.F. Whittlesey, Analytic functions in Banach spaces. Proc. Amer. Math. Soc. 16 (1965) 1077–1083. | DOI | MR | Zbl

H. Winet, G.S. Bernstein and J. Head, Observation on the response of human spermatozoa to gravity, boundaries and fluid shear. Reproduction 70 (1984).

H. Winet, G.S. Bernstein and J. Head, Spermatozoon tendency to accumulate at walls is strongest mechanical response. J. Androl. (1984).

C. Ybert, C. Barentin, C. Cottin-Bizonne, P. Joseph and L. Bocquet, Achieving large slip with superhydrophobic surfaces: scaling laws for generic geometries. Phys. Fluids 19 (2007). | Zbl

Cité par Sources :