Heterogeneous elastic plates with in-plane modulation of the target curvature and applications to thin gel sheets
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 24.

We rigorously derive a Kirchhoff plate theory, via Γ-convergence, from a three-dimensional model that describes the finite elasticity of an elastically heterogeneous, thin sheet. The heterogeneity in the elastic properties of the material results in a spontaneous strain that depends on both the thickness and the plane variables x′. At the same time, the spontaneous strain is h-close to the identity, where h is the small parameter quantifying the thickness. The 2D Kirchhoff limiting model is constrained to the set of isometric immersions of the mid-plane of the plate into ℝ3, with a corresponding energy that penalizes deviations of the curvature tensor associated with a deformation from an x′-dependent target curvature tensor. A discussion on the 2D minimizers is provided in the case where the target curvature tensor is piecewise constant. Finally, we apply the derived plate theory to the modeling of swelling-induced shape changes in heterogeneous thin gel sheets.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2018046
Classification : 49J45, 74B20, 74K20, 74F10
Mots-clés : Dimension reduction, Γ-convergence, Kirchhoff plate theory, incompatible tensor fields, polymer gels, geometry of energy minimizers
Agostiniani, Virginia 1 ; Lucantonio, Alessandro 1 ; Lučić, Danka 1

1
@article{COCV_2019__25__A24_0,
     author = {Agostiniani, Virginia and Lucantonio, Alessandro and Lu\v{c}i\'c, Danka},
     title = {Heterogeneous elastic plates with in-plane modulation of the target curvature and applications to thin gel sheets},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2018046},
     mrnumber = {3986363},
     zbl = {1434.74077},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2018046/}
}
TY  - JOUR
AU  - Agostiniani, Virginia
AU  - Lucantonio, Alessandro
AU  - Lučić, Danka
TI  - Heterogeneous elastic plates with in-plane modulation of the target curvature and applications to thin gel sheets
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2018046/
DO  - 10.1051/cocv/2018046
LA  - en
ID  - COCV_2019__25__A24_0
ER  - 
%0 Journal Article
%A Agostiniani, Virginia
%A Lucantonio, Alessandro
%A Lučić, Danka
%T Heterogeneous elastic plates with in-plane modulation of the target curvature and applications to thin gel sheets
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2018046/
%R 10.1051/cocv/2018046
%G en
%F COCV_2019__25__A24_0
Agostiniani, Virginia; Lucantonio, Alessandro; Lučić, Danka. Heterogeneous elastic plates with in-plane modulation of the target curvature and applications to thin gel sheets. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 24. doi : 10.1051/cocv/2018046. http://www.numdam.org/articles/10.1051/cocv/2018046/

[1] V. Agostiniani and A. Desimone, Rigorous derivation of active plate models for thin sheets of nematic elastomers. Math. Mech. Solids (2017), Available at: . | DOI | MR | Zbl

[2] V. Agostiniani and A. Desimone, Dimension reduction via Γ-convergence for soft active materials. Meccanica 23 (2017) 1–14. | MR

[3] V. Agostiniani, A. Desimone and K. Koumatos, Shape programming for narrow ribbons of nematic elastomers. J. Elasticity 127 (2017) 1–24. | DOI | MR | Zbl

[4] V. Agostiniani, A. Desimone, A. Lucantonio and D. Lučić, Foldable structures made of hydrogel bilayer. Math. Eng. 1 (2018) 204–223. | DOI | MR | Zbl

[5] H. Aharoni, E. Sharon and R. Kupferman, Geometry of thin nematic elastomer sheets. Phys. Rev. Lett. 113 (2014) 257801. | DOI

[6] S. Armon, E. Efrati, R. Kupferman and E. Sharon, Geometry and mechanics in the opening of chiral seed pods. Science 333 (2011) 1726–1730. | DOI

[7] M. Arroyo and A. Desimone, Shape control of active surfaces inspired by the movement of euglenids. Sixtieth anniversary issue in honor of Professor Rodney Hill. J. Mech. Phys. Solids 62 (2014) 99–112. | DOI | MR | Zbl

[8] M. Arroyo, L. Heltai, D. Millán and A. Desimone, Reverse engineering the euglenoid movement. PNAS 109 (2012) 17874–17879. | DOI

[9] S. Bartels, A. Bonito and R.H. Nochetto, Bilayer plates: model reduction, Γ-convergent finite element approximation, and discrete gradient flow. Commun Pure Appl. Math. 70 (2015) 547–589. | DOI | MR | Zbl

[10] K. Bhattacharya, M. Lewicka and M. Schäffner, Plates with incompatible prestrain. Arch. Ration. Mech. Anal. 221 (2016) 143–181. | DOI | MR | Zbl

[11] P.G. Ciarlet, An introduction to differential geometry with applications to elasticity. J. Elasticity 78 (2005) 1–215. | DOI | MR | Zbl

[12] P.G. Ciarlet and P. Ciarlet Jr., Another approach to linearized elasticity and a new proof of Korn’s inequality. Math. Models Methods Appl. Sci. 15 (2005) 259–271. | DOI | MR | Zbl

[13] M. Cicalese, M. Ruf and F. Solombrino, On global and local minimizers of prestrained thin elastic rods. Calc. Var. 56 (2017) 115. | DOI | MR | Zbl

[14] G. Dal Maso, An Introduction to Γ-Convergence, Vol. 8. Springer Science & Business Media, Birkhäuser, Basel (2012). | MR | Zbl

[15] C. Dawson, J.F.V. Vincent and A.-M. Rocca, How pine cones open. Nature 290 (1997) 668. | DOI

[16] L.T. De Haan, C. Sańchez-Somolinos, C.M.W. Bastiaansen, A.P.H.J. Schenning and D.J. Broer, Engineering of complex order and the macroscopic deformation of liquid crystal polymer networks. Angew. Chem. Int. Ed. 51 (2012) 12469–12472. | DOI

[17] M. DoiGel dynamics. J. Phys. Soc. Jpn. 78 (2009) 052001. | DOI

[18] E. Efrati, E. Sharon and R. Kupferman, Elastic theory of unconstrained non-Euclidean plates. J. Mech. Phys. Solids 57 (2009) 762–775. | DOI | MR | Zbl

[19] L. Freddi, P. Hornung, M.G. Mora and R. Paroni, A variational model for anisotropic and naturally twisted ribbons. SIAM J. Math. Anal. 48 (2016) 3883–3906. | DOI | MR | Zbl

[20] G. Friesecke, R.D. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. 55 (2002) 1461–1506. | DOI | MR | Zbl

[21] G. Friesecke, R.D. James and S. Müller, A hierarchy of plate models derived from nonlinear elasticity by Γ-convergence. Arch. Ration. Mech Anal. 180 (2006) 183–236. | DOI | MR | Zbl

[22] M.E. Gurtin, An Introduction to Continuum Mechanics, Vol. 158. Academic Press (1982). | MR | Zbl

[23] P. Hornung, Approximation of flat W2,2 isometric immersions by smooth ones. Arch. Ration. Mech. Anal. 199 (2011) 1015–1067. | DOI | MR | Zbl

[24] P. Hornung, Fine level set structure of at isometric immersions. Arch. Ration. Mech. Anal. 199 (2011) 943–1014. | DOI | MR | Zbl

[25] J. Kim, J.A. Hanna, M. Byun, C.D. Santangelo and R.C. Hayward, Designing responsive buckled surfaces by halftone gel lithography. Science 335 (2012) 1201–1205. | DOI | MR | Zbl

[26] Y. Klein, E. Efrati and E. Sharon, Shaping of elastic sheets by prescription of non-euclidean metrics. Science 315 (2007) 1116–1120. | DOI | MR | Zbl

[27] R. Kohn and E. O’Brien, On the bending and twisting of rods with misfit. J. Elasticity (2017) 1–29. | MR

[28] R. Kupferman and J.P. Solomon, A Riemannian approach to reduced plate, shell, and rod theories. J. Funct. Anal. 266 (2014) 2989–3039. | DOI | MR | Zbl

[29] M. Lewicka, L. Mahadevan and M.R. Pakzad, The Föppl-von Kármán equations for plates with incompatible strains. Proc. R. Soc. Lond. A. 467 (2010) 402–426. | MR | Zbl

[30] M. Lewicka, P. Ochoa, M.R. Pakzad et al., Variational models for prestrained plates with Monge-Ampere constraint. Differ. Integral Equ. 28 (2015) 861–898. | MR | Zbl

[31] M. Lewicka and M.R. Pakzad, Scaling laws for non-Euclidean plates and the W2,2 isometric immersions of Riemannian metrics. ESAIM: COCV 17 (2011) 1158–1173. | Numdam | MR | Zbl

[32] M. Lewicka, A. Raoult and D. Ricciotti, Plates with incompatible prestrain of high order. Ann. Inst. Henri Poincaré (C) Non Lin. Anal. 34 (2017) 1883–1912. | DOI | Numdam | MR | Zbl

[33] A. Lucantonio, G. Tomassetti and A. Desimone, Large-strain poroelastic plate theory for polymer gels with applications to swelling-induced morphing of composite plates. Compos. Part B: Eng. 115 (2016) 330–340. | DOI

[34] C. Mostajeran, Curvature generation in nematic surfaces. Phys. Rev. E 91 (2015) 062405. | DOI | MR

[35] S. Müller and M.R. Pakzad, Regularity properties of isometric immersions. Math. Z. 251 (2005) 313–331. | DOI | MR | Zbl

[36] M.R. Pakzad, On the Sobolev space of isometric immersions. J. Diff. Geom. 66 (2004) 47–69. | MR | Zbl

[37] M. Pezzulla, S.A. Shillig, P. Nardinocchi and D.P. Holmes, Morphing of geometric composites via residual swelling. Soft Matter 11 (2015) 5812–5820. | DOI

[38] M. Pezzulla, G.P. Smith, P. Nardinocchi and D.P. Holmes, Geometry and mechanics of thin growing bilayers. Soft Matter 12 (2016) 4435–4442. | DOI

[39] Y. Sawa, K. Urayama, T. Takigawa, A. Desimone and L. Teresi, Thermally driven giant bending of liquid crystal elastomer films with hybrid alignment. Macromolecules 43 (2010) 4362–4369. | DOI

[40] Y. Sawa, F. Ye, K. Urayama, T. Takigawa, V. Gimenez-Pinto, R.L.B. Selinger and J.V. Selinger, Shape selection of twist-nematic-elastomer ribbons. PNAS 108 (2011) 6364–6368. | DOI

[41] B. Schmidt, Minimal energy configurations of strained multi-layers. Cal. Var. Partial Differ. Equ. 30 (2007) 477–497. | DOI | MR | Zbl

[42] B. Schmidt, Plate theory for stressed heterogeneous multilayers of finite bending energy. J. Math. Pures Appl. 88 (2007) 107–122. | DOI | MR | Zbl

[43] E. Sharon and E. Efrati, The mechanics of non-Euclidean plates. Soft Matter 6 (2010) 5693. | DOI

[44] G. Stoychev, S. Zakharchenko, S. Turcaud, J.W.C. Dunlop and L. Ionov, Shape-programmed folding of stimuli-responsive polymer bilayers. ACS Nano 6 (2012) 3925–3934. | DOI

[45] Z.L. Wu, M. Moshe, J. Greener, H. Therien-Aubin, Z. Nie, E. Sharon and E. Kumacheva, Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses. Nat. Commun. 4 (2013) 1586. | DOI

Cité par Sources :