Recall that a smooth Riemannian metric on a simply connected domain can be realized as the pull-back metric of an orientation preserving deformation if and only if the associated Riemann curvature tensor vanishes identically. When this condition fails, one seeks a deformation yielding the closest metric realization. We set up a variational formulation of this problem by introducing the non-Euclidean version of the nonlinear elasticity functional, and establish its Γ-convergence under the proper scaling. As a corollary, we obtain new necessary and sufficient conditions for existence of a W2,2 isometric immersion of a given 2d metric into .
Mots-clés : non-euclidean plates, nonlinear elasticity, gamma convergence, calculus of variations, isometric immersions
@article{COCV_2011__17_4_1158_0, author = {Lewicka, Marta and Reza Pakzad, Mohammad}, title = {Scaling laws for non-euclidean plates and the $W^{2,2}$ isometric immersions of riemannian metrics}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1158--1173}, publisher = {EDP-Sciences}, volume = {17}, number = {4}, year = {2011}, doi = {10.1051/cocv/2010039}, mrnumber = {2859870}, zbl = {1300.74028}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2010039/} }
TY - JOUR AU - Lewicka, Marta AU - Reza Pakzad, Mohammad TI - Scaling laws for non-euclidean plates and the $W^{2,2}$ isometric immersions of riemannian metrics JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2011 SP - 1158 EP - 1173 VL - 17 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2010039/ DO - 10.1051/cocv/2010039 LA - en ID - COCV_2011__17_4_1158_0 ER -
%0 Journal Article %A Lewicka, Marta %A Reza Pakzad, Mohammad %T Scaling laws for non-euclidean plates and the $W^{2,2}$ isometric immersions of riemannian metrics %J ESAIM: Control, Optimisation and Calculus of Variations %D 2011 %P 1158-1173 %V 17 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2010039/ %R 10.1051/cocv/2010039 %G en %F COCV_2011__17_4_1158_0
Lewicka, Marta; Reza Pakzad, Mohammad. Scaling laws for non-euclidean plates and the $W^{2,2}$ isometric immersions of riemannian metrics. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 4, pp. 1158-1173. doi : 10.1051/cocv/2010039. http://www.numdam.org/articles/10.1051/cocv/2010039/
[1] On the smoothness of isometries. Duke Math. J. 37 (1970) 741-750. | MR | Zbl
and ,[2] An introduction to Γ-convergence, Progress in Nonlinear Differential Equations and their Applications 8. Birkhäuser (1993). | MR | Zbl
,[3] Elastic theory of unconstrained non-Euclidean plates. J. Mech. Phys. Solids 57 (2009) 762-775. | MR
, and ,[4] A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity. Comm. Pure Appl. Math. 55 (2002) 1461-1506. | MR | Zbl
, and ,[5] Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Gamma-convergence. C. R. Math. Acad. Sci. Paris 336 (2003) 697-702. | MR | Zbl
, , and ,[6] A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence. Arch. Ration. Mech. Anal. 180 (2006) 183-236. | MR | Zbl
, and ,[7] Partial Differential Relations. Springer-Verlag, Berlin-Heidelberg (1986). | MR | Zbl
,[8] The Weyl problem with nonnegative Gauss curvature. J. Diff. Geometry 39 (1994) 331-342. | MR | Zbl
and ,[9] Isometric embedding of Riemannian manifolds in Euclidean spaces, Mathematical Surveys and Monographs 130. American Mathematical Society, Providence (2006). | MR | Zbl
and ,[10] Isometric embedding of the 2-sphere with nonnegative curvature in . Math. Z. 219 (1995) 323-334. | MR | Zbl
and ,[11] Isometric embeddings of surfaces with nonnegative curvature in . Duke Math. J. 67 (1992) 423-459. | MR | Zbl
,[12] Shaping of elastic sheets by prescription of non-Euclidean metrics. Science 315 (2007) 1116-1120. | MR | Zbl
, and ,[13] On C1 isometric embeddings. I. Indag. Math. 17 (1955) 545-556. | Zbl
,[14] On C1 isometric embeddings. II. Indag. Math. 17 (1955) 683-689. | Zbl
,[15] A nonlinear theory for shells with slowly varying thickness. C.R. Acad. Sci. Paris, Ser. I 347 (2009) 211-216. | MR | Zbl
, and ,[16] Shell theories arising as low energy Γ-limit of 3d nonlinear elasticity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. IX (2010) 1-43. | Numdam | MR
, and ,[17] A Lusin property of Sobolev functions. Indiana U. Math. J. 26 (1977) 645-651. | MR | Zbl
,[18] An example of a two-dimensional Riemannian metric which does not admit a local realization in E3. Dokl. Akad. Nauk. SSSR (N.S.) 198 (1971) 42-43. [Soviet Math. Dokl. 12 (1971) 729-730.] | MR | Zbl
,[19] A Comprehensive Introduction to Differential Geometry. Third edition, Publish or Perish Inc. (1999). | Zbl
,Cité par Sources :