Existence, uniqueness and asymptotic analysis of optimal control problems for a model of groundwater pollution
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 53.

An optimal control problem of contaminated underground water is considered. The spatio-temporal objective takes into account the economic trade off between the pollutant use –for instance fertilizer– and the cleaning costs. It is constrained by a hydrogeological model for the spread of the pollution in the aquifer. We consider a broad range of reaction kinetics. The aim of the paper is two-fold. On the one hand, we rigorously derive, by asymptotic analysis, the effective optimal control problem for contaminant species that are slightly concentrated in the aquifer. On the other hand, the mathematical analysis of the optimal control problems is performed and we prove in particular that the latter effective problem is well-posed. Furthermore, a stability property of the optimal control process is provided: any optimal solution of the properly scaled problem tends to the optimal solution of the effective problem as the characteristic pollutant concentration decreases.

DOI : 10.1051/cocv/2018041
Classification : 49A20, 49A50, 37N40, 76R99, 37N35
Mots-clés : Optimal control problem, hydrogeological state equations, nonlinearly coupled problem, parabolic and elliptic PDEs, asymptotic analysis, well-posedness
Augeraud-Véron, Emmanuelle 1 ; Choquet, Catherine 1 ; Comte, Éloïse 1

1
@article{COCV_2019__25__A53_0,
     author = {Augeraud-V\'eron, Emmanuelle and Choquet, Catherine and Comte, \'Elo{\"\i}se},
     title = {Existence, uniqueness and asymptotic analysis of optimal control problems for a model of groundwater pollution},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2018041},
     zbl = {1437.49032},
     mrnumber = {4019756},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2018041/}
}
TY  - JOUR
AU  - Augeraud-Véron, Emmanuelle
AU  - Choquet, Catherine
AU  - Comte, Éloïse
TI  - Existence, uniqueness and asymptotic analysis of optimal control problems for a model of groundwater pollution
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2018041/
DO  - 10.1051/cocv/2018041
LA  - en
ID  - COCV_2019__25__A53_0
ER  - 
%0 Journal Article
%A Augeraud-Véron, Emmanuelle
%A Choquet, Catherine
%A Comte, Éloïse
%T Existence, uniqueness and asymptotic analysis of optimal control problems for a model of groundwater pollution
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2018041/
%R 10.1051/cocv/2018041
%G en
%F COCV_2019__25__A53_0
Augeraud-Véron, Emmanuelle; Choquet, Catherine; Comte, Éloïse. Existence, uniqueness and asymptotic analysis of optimal control problems for a model of groundwater pollution. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 53. doi : 10.1051/cocv/2018041. http://www.numdam.org/articles/10.1051/cocv/2018041/

[1] E. Augeraud-Véron, C. Choquet and É. Comte, Optimal control for a groundwater pollution ruled by a convection-diffusion-reaction problem. J. Optim. Theory Appl. 173 (2017) 941–966. | DOI | MR | Zbl

[2] E. Augeraud-Véron and M. Leandri, Optimal pollution control with distributed delays. J. Math. Econom. 55 (2014) 24–32. | DOI | MR | Zbl

[3] J. Bear and A. Verruijt, Modeling Groundwater Flow and Pollution. Theory and Applications of Transport in Porous Media (1987). | DOI

[4] C. Benosman, B. Ainseba and A. Ducrot, Optimization of cytostatic leukemia therapy in an advection reaction diffusion model. J. Optim. Theory Appl. 167 (2015) 296–325. | DOI | MR | Zbl

[5] P. Bordenave, F. Bouraoui, C. Gascuel-Odoux, J. Molénat and P. Mérot, Décalages temporels entre des modifications des pratiques agricoles et la diminution des nitrates dans les eaux superficielles, in Pollutions diffuses : du bassin au littoral, edited by M. Merceron. IFREMER, Ploufargan (1999) 311–333.

[6] W. Brock and A. Xepapadeas, Diffusion-induced instability and pattern formation in infinite horizon recursive optimal control. J. Econom. Dyn. Control 32 (2008) 2745–2787. | DOI | MR | Zbl

[7] C. Camacho and A. Pérez-Barahona, Land use dynamics and the environment. J. Econom. Dyn. Control 52 (2015) 96–118. | DOI | MR | Zbl

[8] C. Choquet and A. Mikelić, Rigorous upscaling of the reactive flow with finite kinetics and under dominant Péclet number. Continuum Mech. Thermodyn. 21 (2009) 125–140. | DOI | MR | Zbl

[9] R.M. Clark and P. Dorsey, A model of costs for treating drinking water. J. Am. Water Works Assoc. 74 (1982) 618–627. | DOI

[10] D. Dearmont, B.A. Mccarl and D.A. Tolman, Costs of water treatment due to diminished water quality: a case study in Texas. Water Resour. Res. 34 (1998) 849–853. | DOI

[11] J. De Frutos and G. Martin-Herran, Spatial effects and strategic behavior in a multiregional transboundary pollution dynamic game. To appear in: J. Environ. Econom. Manag. (2017) doi: . | DOI

[12] C. Galusinski and M. Saad, On a degenerate parabolic system for compressible, immiscible, two-phase flows in porous media. Adv. Differ. Equ. 9 (2004) 1235–1278. | MR | Zbl

[13] W. Hamdi, F. Gamaoun, D.E. Pelster and M. Seffen, Nitrate sorption in an agricultural soil profile. Appl. Environ. Soil Sci. 2013 (2013) 597824. | DOI

[14] A. Haraux and F. Murat, Influence of a singular perturbation on the infimum of some functionals. J. Differ. Equ. 58 (1985) 43–75. | DOI | MR | Zbl

[15] P.I. Kogut and G.R. Leugering, Optimal Control Problems for Partial Differential Equations on Reticulated Domains: Approximation and Asymptotic Analysis. Systems and Control: Foundations and Applications. Birkhäuser (2011). | MR | Zbl

[16] O.A. Ladyzhenskaya and N.N. Ural’Tseva, Linear and Quasilinear Elliptic Equations. Mathematics in Sciences in Engineering. Academic Press (1968). | MR | Zbl

[17] J. Lankoski and M. Ollikainen, Innovations in nonpoint source pollutionpolicy. European perspectives. The Magazine of Food Farm Resource issues 28 (2013) 1–5.

[18] J.L. Lions and E. Magenes, Problèmes aux limites non homogènes (II). Ann. Inst. Fourier 11 (1961) 137–178. | DOI | Numdam | MR | Zbl

[19] G. De Marsily, Quantitative Hydrogeology: Groundwater Hydrology for Engineers. Academic Press (1986).

[20] F. Van Der Ploeg and A. De Zeeuw, A differential game of international pollution control. Syst. Control Lett. 17 (1991) 409–414. | DOI | MR | Zbl

[21] C.S. Rogers, Economic costs of conventional surface-water treatment: A case study of the Mcallen Northwest Facility. Master of Science Dissertation. Texas A&M University, USA (2010).

[22] A.E. Scheidegger, The Physics of Flow through Porous Media. University of Toronto Press (1974). | Zbl

[23] J. Simon, Compact sets in the space Lp(0, T; B). Ann. Mat. Pur. Appl. (IV) CXLVI (1987) 65–96. | MR | Zbl

[24] L.C. Tartar, Compensated compactness and applications to partial differential equations, in Vol. 4 of Research Notes in Mathematics, Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, edited by R.J. Knops. Pitman Press, London (1979). | MR | Zbl

[25] F.A. Williams, Combustion Theory: The Fundamental Theory of Chemically Reacting Flow Systems, 2nd Edn. Benjamin-Cummings Pub. Co., Menlo Park, Calif. (1985).

[26] Y. Yuan, D. Liang and H. Zhu, Optimal control of groundwater pollution combined with source abatement costs and taxes. J. Comput. Sci. 20 (2017) 17–29. | DOI | MR

[27] Commissariat général au développement durable : Les teneurs en nitrates augmentent dans les nappes phréatiques jusqu’en 2004 puis se stabilisent, Commissariat général au développement durable, Observations et Statistiques, numéro 16, mai 2013. Available at: from the www.statistiques.developpement-durable.gouv.fr (2013).

Cité par Sources :