Control and stabilization of the periodic fifth order Korteweg-de Vries equation
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 38.

We establish local exact control and local exponential stability of periodic solutions of fifth order Korteweg-de Vries type equations in H$$(𝕋), s > 2. A dissipative term is incorporated into the control which, along with a propagation of regularity property, yields a smoothing effect permitting the application of the contraction principle.

DOI : 10.1051/cocv/2018033
Classification : 35Q53, 93B05, 93D15
Mots-clés : Korteweg-de Vries equation, periodic domain, propagation of regularity, exact controllability, stabilization
Flores, Cynthia 1 ; Smith, Derek L. 1

1
@article{COCV_2019__25__A38_0,
     author = {Flores, Cynthia and Smith, Derek L.},
     title = {Control and stabilization of the periodic fifth order {Korteweg-de} {Vries} equation},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2018033},
     zbl = {1437.35610},
     mrnumber = {4003462},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2018033/}
}
TY  - JOUR
AU  - Flores, Cynthia
AU  - Smith, Derek L.
TI  - Control and stabilization of the periodic fifth order Korteweg-de Vries equation
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2018033/
DO  - 10.1051/cocv/2018033
LA  - en
ID  - COCV_2019__25__A38_0
ER  - 
%0 Journal Article
%A Flores, Cynthia
%A Smith, Derek L.
%T Control and stabilization of the periodic fifth order Korteweg-de Vries equation
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2018033/
%R 10.1051/cocv/2018033
%G en
%F COCV_2019__25__A38_0
Flores, Cynthia; Smith, Derek L. Control and stabilization of the periodic fifth order Korteweg-de Vries equation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 38. doi : 10.1051/cocv/2018033. http://www.numdam.org/articles/10.1051/cocv/2018033/

[1] F.D. Araruna, R.A. Capistrano-Filho and G.G. Doronin, Energy decay for the modified Kawahara equation posed in a bounded domain. J. Math. Anal. Appl. 385 (2012) 743–756. | DOI | MR | Zbl

[2] D.J. Benney, A general theory for interactions between short and long waves. Stud. Appl. Math. 56 (1976/77) 81–94. | DOI | MR | Zbl

[3] J.L. Bona and R. Smith, The initial-value problem for the Korteweg-de Vries equation. Philos. Trans. Roy. Soc. Lond. Ser. A 278 (1975) 555–601. | DOI | MR | Zbl

[4] J.L. Bona, S.M. Sun and B.-Y. Zhang, A nonhomogeneous boundary-value problem for the Kortewegde Vries equation posed on a finite domain. Comm. Partial Differential Equations 28 (2003) 1391–1436. | DOI | MR | Zbl

[5] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations. Geom. Funct. Anal. 3 (1993) 107–156. | DOI | MR | Zbl

[6] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation. Geom. Funct. Anal. 3 (1993) 209–262. | DOI | MR | Zbl

[7] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified KdV on ℝ and 𝕋. J. Am. Math. Soc. 16 (2003) 705–749. | DOI | MR | Zbl

[8] J.-M. Coron, Control and Nonlinearity. Vol. 136 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2007). | MR | Zbl

[9] W. Craig, P. Guyenne and H. Kalisch, Hamiltonian long-wave expansions for free surfaces and interfaces. Commun. Pure Appl. Math. 58 (2005) 1587–1641. | DOI | MR | Zbl

[10] B. Dehman, P. Gérard and G. Lebeau, Stabilization and control for the nonlinear Schrödinger equation on a compact surface. Math. Z. 254 (2006) 729–749. | DOI | MR | Zbl

[11] G.G. Doronin and N.A. Larkin, Kawahara equation in a bounded domain. Discrete Contin. Dyn. Syst. Ser. B 10 (2008) 783–799. | MR | Zbl

[12] G. Gao and S.-M. Sun, A Korteweg–de Vries type of fifth-order equations on a finite domain with point dissipation. J. Math. Anal. Appl. 438 (2016) 200–239. | DOI | MR | Zbl

[13] C.S. Gardner, J.M. Greene, M.D. Kruskal and R.M. Miura, Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 19 (1967) 1095–1097. | DOI | Zbl

[14] O. Glass and S. Guerrero, On the controllability of the fifth-order Korteweg-de Vries equation. Ann. Inst. Henri Poincaré Anal. Non Linéaire 26 (2009) 2181–2209. | DOI | Numdam | MR | Zbl

[15] A. Grünrock, On the hierarchies of higher order mKdV and KdV equations. Cent. Eur. J. Math. 8 (2010) 500–536. | DOI | MR | Zbl

[16] Z. Guo, Global well-posedness of Korteweg-de Vries equation in H−3/4(ℝ). J. Math. Pures Appl. (9) 91 (2009) 583–597. | DOI | MR | Zbl

[17] Z. Guo, C. Kwak and S. Kwon, Rough solutions of the fifth-order KdV equations. J. Funct. Anal. 265 (2013) 2791–2829. | DOI | MR | Zbl

[18] D. Henry, Geometric Theory of Semilinear Parabolic Equations. Vol. 840 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, New York (1981). | DOI | MR | Zbl

[19] J. Holmer, The initial-boundary value problem for the Kortewegde Vries equation. Comm. Partial Differential Equations 31 (2006) 1151–1190. | DOI | MR | Zbl

[20] A.D. Ionescu and C.E. Kenig, Global well-posedness of the Benjamin-Ono equation in low-regularity spaces. J. Am. Math. Soc. 20 (2007) 753–798. | DOI | MR | Zbl

[21] T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, in Studies in Applied Mathematics. Vol. 8 of Adv. Math. Suppl. Stud. Academic Press, New York (1983) 93–128. | MR | Zbl

[22] T. Kato, Local well-posedness for Kawahara equation. Adv. Differential Equations 16 (2011) 257–287 | DOI | MR | Zbl

[23] T. Kato, Global well-posedness for the Kawahara equation with low regularity. Commun. Pure Appl. Anal. 12 (2013) 1321–1339. | DOI | MR | Zbl

[24] T. Kawahara, Oscillatory solitary waves in dispersive media. J. Phys. Soc. Jpn. 33 (1972) 260–264. | DOI

[25] C.E. Kenig and D. Pilod, Well-posedness for the fifth-order KdV equation in the energy space. Trans. Am. Math. Soc. 367 (2015) 2551–2612. | DOI | MR | Zbl

[26] C. E. Kenig and D. Pilod, Local well-posedness for the KdV hierarchy at high regularity. Adv. Differential Equations 21 (2016) 801–836. | DOI | MR | Zbl

[27] C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Commun. Pure Appl. Math. 46 (1993) 527–620. | DOI | MR | Zbl

[28] C. E. Kenig, G. Ponce and L. Vega, Higher-order nonlinear dispersive equations. Proc. Am. Math. Soc. 122 (1994) 157–166. | DOI | MR | Zbl

[29] C. E. Kenig, G. Ponce and L. Vega, On the hierarchy of the generalized KdV equations, in Singular Limits of Dispersive Waves (Lyon, 1991). Vol. 320 of NATO Adv. Sci. Inst. Ser. B Phys. Plenum, New York (1994) 347–356. | MR | Zbl

[30] N. Kishimoto, Well-posedness of the Cauchy problem for the Korteweg-de Vries equation at the critical regularity. Differential Integral Equations 22 (2009) 447–464. | DOI | MR | Zbl

[31] C. Kwak, Local well-posedness for the fifth-order KdV equations on 𝕋. J. Differential Equations 260 (2016) 7683–7737. | DOI | MR | Zbl

[32] S. Kwon, On the fifth-order KdV equation: local well-posedness and lack of uniform continuity of the solution map. J. Differential Equations 245 (2008) 2627–2659. | DOI | MR | Zbl

[33] N.A. Larkin and M.H. Simões, The kawahara equation on bounded intervals and on a half-line. Nonlinear Anal. Theory Methods Appl. 127 (2015) 397–412. | DOI | MR

[34] C. Laurent, Global controllability and stabilization for the nonlinear Schrödinger equation on an interval. ESAIM: COCV 16 (2010) 356–379. | Numdam | MR | Zbl

[35] C. Laurent, Global controllability and stabilization for the nonlinear Schrödinger equation on some compact manifolds of dimension 3. SIAM J. Math. Anal. 42 (2010) 785–832. | DOI | MR | Zbl

[36] C. Laurent, F. Linares and L. Rosier, Control and stabilization of the Benjamin-Ono equation in L2(𝕋). Arch. Rational Mech. Anal. 218 (2015) 1531–1575. | DOI | MR | Zbl

[37] C. Laurent, L. Rosier and B.-Y. Zhang, Control and stabilization of the Korteweg-de Vries equation on a periodic domain. Comm. Partial Differential Equations 35 (2010) 707–744. | DOI | MR | Zbl

[38] P.D. Lax, Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. 21 (1968) 467–490. | DOI | MR | Zbl

[39] F. Linares and L. Rosier, Control and stabilization of the Benjamin-Ono equation on a periodic domain. Trans. Am. Math. Soc. 367 (2015) 4595–4626. | DOI | MR | Zbl

[40] L. Molinet, Global well-posedness in L2 for the periodic Benjamin-Ono equation. Am. J. Math. 130 (2008) 635–683. | DOI | MR | Zbl

[41] L. Molinet, J.C. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations. SIAM J. Math. Anal. 33 (2001) 982–988. | DOI | MR | Zbl

[42] P.J. Olver, Hamiltonian and non-Hamiltonian models for water waves, in Trends and Applications of Pure Mathematics to Mechanics (Palaiseau, 1983). Vol. 195 of Lecture Notes in Physics. Springer, Berlin (1984) 273–290. | DOI | MR | Zbl

[43] D. Pilod, On the Cauchy problem for higher-order nonlinear dispersive equations. J. Differential Equations 245 (2008) 2055–2077. | DOI | MR | Zbl

[44] G. Ponce, Lax pairs and higher order models for water waves. J. Differential Equations 102 (1993) 360–381. | DOI | MR | Zbl

[45] L. Rosier and B.-Y. Zhang, Control and stabilization of the Korteweg-de Vries equation: recent progresses. J. Syst. Sci. Complex. 22 (2009) 647–682. | DOI | MR | Zbl

[46] L. Rosier and B.-Y. Zhang, Local exact controllability and stabilizability of the nonlinear Schrödinger equation on a bounded interval. SIAM J. Control Optim. 48 (2009) 972–992. | DOI | MR | Zbl

[47] D.L. Russell and B.-Y. Zhang, Exact controllability and stabilizability of the Korteweg-de Vries equation. Trans. Am. Math. Soc. 348 (1996) 3643–3672. | DOI | MR | Zbl

[48] J.-C. Saut and B. Scheurer, Unique continuation for some evolution equations. J. Differential Equations 66 (1987) 118–139. | DOI | MR | Zbl

[49] M. Schwarz Jr., The initial value problem for the sequence of generalized Korteweg-de Vries equations. Adv. Math. 54 (1984) 22–56. | DOI | MR | Zbl

[50] C.F. Vasconcellos and P.N. Da Silva, Stabilization of the Kawahara equation with localized damping. ESAIM: COCV 17 (2011) 102–116. | Numdam | MR | Zbl

[51] X. Zhao and B.-Y. Zhang, Global controllability and stabilizability of Kawahara equation on a periodic domain. Math. Control Relat. Fields 5 (2015) 335–358. | DOI | MR | Zbl

[52] D. Zhou and B.-Y. Zhang, Initial boundary value problem of the Hamiltonian fifth-order KDV equation on a bounded domain. Adv. Differential Equations 21 (2016) 977–1000. | MR | Zbl

Cité par Sources :