Extremal spectral gaps for periodic Schrödinger operators
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 40.

The spectrum of a Schrödinger operator with periodic potential generally consists of bands and gaps. In this paper, for fixed m, we consider the problem of maximizing the gap-to-midgap ratio for the mth spectral gap over the class of potentials which have fixed periodicity and are pointwise bounded above and below. We prove that the potential maximizing the mth gap-to-midgap ratio exists. In one dimension, we prove that the optimal potential attains the pointwise bounds almost everywhere in the domain and is a step-function attaining the imposed minimum and maximum values on exactly m intervals. Optimal potentials are computed numerically using a rearrangement algorithm and are observed to be periodic. In two dimensions, we develop an efficient rearrangement method for this problem based on a semi-definite formulation and apply it to study properties of extremal potentials. We show that, provided a geometric assumption about the maximizer holds, a lattice of disks maximizes the first gap-to-midgap ratio in the infinite contrast limit. Using an explicit parametrization of two-dimensional Bravais lattices, we also consider how the optimal value varies over all equal-volume lattices.

DOI : 10.1051/cocv/2018029
Classification : 35P05, 35B10, 35Q93, 49R05, 65N25
Mots-clés : Schrödinger operator, periodic structure, optimal design, spectral bandgap, Bravais lattices, rearrangement algorithm
Kao, Chiu-Yen 1 ; Osting, Braxton 1

1
@article{COCV_2019__25__A40_0,
     author = {Kao, Chiu-Yen and Osting, Braxton},
     title = {Extremal spectral gaps for periodic {Schr\"odinger} operators},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2018029},
     zbl = {1459.35296},
     mrnumber = {4009413},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2018029/}
}
TY  - JOUR
AU  - Kao, Chiu-Yen
AU  - Osting, Braxton
TI  - Extremal spectral gaps for periodic Schrödinger operators
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2018029/
DO  - 10.1051/cocv/2018029
LA  - en
ID  - COCV_2019__25__A40_0
ER  - 
%0 Journal Article
%A Kao, Chiu-Yen
%A Osting, Braxton
%T Extremal spectral gaps for periodic Schrödinger operators
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2018029/
%R 10.1051/cocv/2018029
%G en
%F COCV_2019__25__A40_0
Kao, Chiu-Yen; Osting, Braxton. Extremal spectral gaps for periodic Schrödinger operators. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 40. doi : 10.1051/cocv/2018029. http://www.numdam.org/articles/10.1051/cocv/2018029/

[1] M.S. Ashbaugh and R.D. Benguria, Proof of the payne-pólya-weinberger conjecture. Bull. Am. Math. Soc. 25 (1991) 19–29. | DOI | MR | Zbl

[2] M.S. Ashbaugh and R. Svirsky, Periodic potentials with minimal energy bands. Proc. Am. Math. Soc. 114 (1992) 69–69. | DOI | MR | Zbl

[3] C. Bandle, Isoperimetric Inequalities and Applications. Pitman Publishing (1980). | MR

[4] S. Chanillo, D. Grieser, M. Imai, K. Kurata and I. Ohnishi, Symmetry Breaking and Other Phenomena in the Optimization of Eigenvalues for Composite Membranes. Commun. Math. Phys. 214 (2000) 315–337. | DOI | MR | Zbl

[5] W. Chen, C.-S. Chou and C.-Y. Kao, Minimizing eigenvalues for inhomogeneous rods and plates. J. Sci. Comput. (2016) 1–31. | MR

[6] M. Chugunova, B. Jadamba, C.-Y. Kao, C. Klymko, E. Thomas and B. Zhao. Study of a mixed dispersal population dynamics model, in Topics in Numerical Partial Differential Equations and Scientific Computing. Springer (2016) 51–77. | DOI | MR | Zbl

[7] S.J. Cox, The two phase drum with the deepest bass note. Japan. J. Indust. Appl. Math. 8 (1991) 345–355. | DOI | MR | Zbl

[8] S.J. Cox and D. C. Dobson, Band structure optimization of two-dimensional photonic crystals in h-polarization. J. Comput. Phys. 158 (2000) 214–224. | DOI | Zbl

[9] D.C. Dobson and S. J. Cox, Maximizing band gaps in two-dimensional photonic crystals. SIAM J. Appl. Math. 59 (1999) 2108–2120. | DOI | MR | Zbl

[10] M.S.P. Eastham, The spectral theory of periodic differential equations. Scottish Academic Press (1973). | MR | Zbl

[11] C. Fefferman and M. Weinstein, Honeycomb lattice potentials and dirac points. J. Am. Math. Soc. 25 (2012) 1169–1220. | DOI | MR | Zbl

[12] M. Grant and S. Boyd, Graph implementations for nonsmooth convex programs. Recent Advances in Learning and Control, edited by V. Blondel, S. Boyd and H. Kimura. In Vol. 371 of Lecture Notes in Control and Information Sciences. Springer-Verlag Limited (2008) 95–110. | DOI | MR | Zbl

[13] M. Grant and S. Boyd, CVX: Matlab software for disciplined convex programming, version 2.1 March (2014) http://cvxr.com/cvx.

[14] G.H. Hardy, J.E. Littlewood and G. Pólya, Inequalities. Cambridge University Press (1952). | MR | Zbl

[15] L. He, C.-Y. Kao and S. Osher, Incorporating topological derivatives into shape derivatives based level set methods. J. Comput. Phys. 225 (2007) 891–909. | DOI | MR | Zbl

[16] R. Hempel and K. Lienau, Spectral properties of periodic media in the large coupling limit: properties of periodic media. Commun. Partial Differ. Equ. 25 (2000) 1445–1470. | DOI | MR | Zbl

[17] R. Hempel and O. Post, Spectral gaps for periodic elliptic operators with high contrast: an overview, in Progress in Analysis. World Scientific Publishing Company (2003) 577–587. | DOI | MR | Zbl

[18] A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators. Birkhäuser Verlag (2006). | DOI | MR | Zbl

[19] M. Hintermüller, C.-Y. Kao and A. Laurain, Principal eigenvalue minimization for an elliptic problem with indefinite weight and robin boundary conditions. Appl. Math. Optim. 65 (2012) 111–146. | DOI | MR | Zbl

[20] D. Kang and C.-Y. Kao, Minimization of inhomogeneous biharmonic eigenvalue problems. Appl. Math. Model. 51 (2017) 587–604. | DOI | MR | Zbl

[21] C.-Y. Kao, R. Lai and B. Osting, Maximization of Laplace-Beltrami eigenvalues on closed Riemannian surfaces. ESAIM: COCV 23 (2017) 685–720. | Numdam | MR | Zbl

[22] C.-Y. Kao, Y. Lou and E. Yanagida, Principal eigenvalue for an elliptic problem with indefinite weight on cylindrical domains. Mathe. Biosci. Eng. 5 (2008) 315–335. | DOI | MR | Zbl

[23] C.-Y. Kao, S. Osher and E. Yablonovitch, Maximizing band gaps in two-dimensional photonic crystals by using level set methods. Appl. Phys. B 81 (2005) 235–244. | DOI

[24] C.-Y. Kao and S. Su, Efficient rearrangement algorithms for shape optimization on elliptic eigenvalue problems. J. Sci. Comput. 54 (2013) 492–512. | DOI | MR | Zbl

[25] B. Kawohl, Symmetrization-or How to Prove Symmetry of Solutions to a PDE. Chapman and Hall CRC Research Notes in Mathematics. (2000) 214–229. | MR | Zbl

[26] M. Krein, On certain Problems on the Maximum and Minimum of Characteristic Values and on the Lyapunov Zones of Stability. Vol. of 2 AMS Translations Series (1955) 163–187. | DOI | MR | Zbl

[27] R.D.L. Kronig and W. Penney, Quantum mechanics of electrons in crystal lattices, in Vol. 130 of Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society (1931) 499–513. | JFM | Zbl

[28] P. Kuchment, An overview of periodic elliptic operators. Bull. Am. Math. Soc. 53 (2016) 343–414. | DOI | MR | Zbl

[29] J.T. Lewis and M.E. Muldoon, Monotonicity and convexity properties of zeros of bessel functions. SIAM J. Math. Anal. 8 (1977) 171–178. | DOI | MR | Zbl

[30] R. Lipton and R. Viator, Jr., Creating band gaps in periodic media. SIAM Multiscale Model. Simul. 15 (2017) 1612–1650. | DOI | MR | Zbl

[31] H. Men, K.Y.K. Lee, R. M. Freund, J. Peraire and S.G. Johnson, Robust topology optimization of three-dimensional photonic-crystal band-gap structures. Optics Express 22 (2014) 22632. | DOI

[32] H. Men, N.C. Nguyen, R.M. Freund, P.A. Parrilo and J. Peraire, Bandgap optimization of two-dimensional photonic crystals using semidefinite programming and subspace methods. J. Comput. Phys. 229 (2010) 3706–3725. | DOI | MR | Zbl

[33] S.J. Osher and F. Santosa, Level Set Methods for Optimization Problems Involving Geometry and Constraints 1. Frequencies of a Two-Density Inhomogeneous Drum. J. Comp. Phys. 171 (2001) 272–288. | DOI | MR | Zbl

[34] B. Osting, Bragg structure and the first spectral gap. Appl. Math. Lett. 25 (2012) 1926–1930. | DOI | MR | Zbl

[35] B. Osting and M.I. Weinstein, Long-lived scattering resonances and Bragg structures. SIAM J. Appl. Math. 73 (2013) 827–852. | DOI | MR | Zbl

[36] B. Osting, C.D. White and E. Oudet, Minimal Dirichlet energy partitions for graphs. SIAM J. Sci. Comput. 36 (2014) A1635–A1651. | DOI | MR | Zbl

[37] G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics. Princeton University Press (1951). | MR | Zbl

[38] O. Sigmund and K. Hougaard, Geometric properties of optimal photonic crystals. Phys. Rev. Lett. 100 (2008) 153904. | DOI

Cité par Sources :