Variational approximation of size-mass energies for k-dimensional currents
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 43.

In this paper we produce a Γ-convergence result for a class of energies $$ modeled on the Ambrosio-Tortorelli functional. For the choice k = 1 we show that $$ Γ-converges to a branched transportation energy whose cost per unit length is a function $$ depending on a parameter a > 0 and on the codimension n − 1. The limit cost f$$(m) is bounded from below by 1 + m so that the limit functional controls the mass and the length of the limit object. In the limit a ↓ 0 we recover the Steiner energy. We then generalize the approach to any dimension and codimension. The limit objects are now k-currents with prescribed boundary, the limit functional controls both their masses and sizes. In the limit a ↓ 0, we recover the Plateau energy defined on k-currents, k < n. The energies $$ then could be used for the numerical treatment of the k-Plateau problem.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2018027
Classification : 49Q20, 49J45, 35A35
Mots-clés : Γ-convergence, Steiner problem, plateau problem, phase-field approximations
Chambolle, Antonin 1 ; Ferrari, Luca A.D. 1 ; Merlet, Benoit 1

1
@article{COCV_2019__25__A43_0,
     author = {Chambolle, Antonin and Ferrari, Luca A.D. and Merlet, Benoit},
     title = {Variational approximation of size-mass energies for k-dimensional currents},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2018027},
     mrnumber = {4009414},
     zbl = {1437.49061},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2018027/}
}
TY  - JOUR
AU  - Chambolle, Antonin
AU  - Ferrari, Luca A.D.
AU  - Merlet, Benoit
TI  - Variational approximation of size-mass energies for k-dimensional currents
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2018027/
DO  - 10.1051/cocv/2018027
LA  - en
ID  - COCV_2019__25__A43_0
ER  - 
%0 Journal Article
%A Chambolle, Antonin
%A Ferrari, Luca A.D.
%A Merlet, Benoit
%T Variational approximation of size-mass energies for k-dimensional currents
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2018027/
%R 10.1051/cocv/2018027
%G en
%F COCV_2019__25__A43_0
Chambolle, Antonin; Ferrari, Luca A.D.; Merlet, Benoit. Variational approximation of size-mass energies for k-dimensional currents. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 43. doi : 10.1051/cocv/2018027. http://www.numdam.org/articles/10.1051/cocv/2018027/

[1] L. Ambrosio and P. Tilli, Topics on Analysis in Metric Spaces. Vol. 25 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2004). | MR | Zbl

[2] L. Ambrosio and V.M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Commun. Pure Appl. Math. 43 (1990) 999–1036. | DOI | MR | Zbl

[3] L. Ambrosio and V.M. Tortorelli, On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. B 6 (1992) 105–123. | MR | Zbl

[4] L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000). | MR | Zbl

[5] M. Bernot, V. Caselles and J.-M. Morel, Optimal Transportation Networks: Models and Theory. Vol. 1955 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (2009). | MR | Zbl

[6] M. Bonafini, G. Orlandi and E. Oudet, Variational Approximation of Functionals Defined on 1-Dimensional Connected Sets: The Planar Case. SIAM J. Math. Anal. 50 (2016) 6307–6332.

[7] M. Bonnivard, A. Lemenant and F. Santambrogio, Approximation of length minimization problems among compact connected sets. SIAM J. Math. Anal. 47 (2015) 1489–1529. | DOI | MR | Zbl

[8] A. Braides, Approximation of Free-Discontinuity Problems. Vol. 1694 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (1998). | DOI | MR | Zbl

[9] A. Braides, Γ-Convergence for Beginners. Vol. 22 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2002). | MR | Zbl

[10] A. Chambolle, L. Ferrari and B. Merlet, A phase-field approximation of the Steiner problem in dimension two. Adv. Calc. Var. 12 (2017) 157–179. | DOI | MR | Zbl

[11] A. Chambolle, L. Ferrari and B. Merlet, Strong Approximation in h-Mass of Rectifiable Currents Under Homological Constraint. Adv. Calc. Var. (2017). | MR

[12] M. Colombo, A. De Rosa, A. Marchese and S. Stuvard, On the lower semicontinuous envelope of functionals defined on polyhedral chains. Nonlinear Anal. 163 (2017) 201–215. | DOI | MR | Zbl

[13] S. Conti, M. Focardi and F. Iurlano, Phase field approximation of cohesive fracture models. Ann. Inst. Henri Poincaré Anal. Non Linéaire 33 (2016) 1033–1067. | DOI | Numdam | MR | Zbl

[14] G. Dal Maso An Introduction to Γ-Convergence. Vol. 8 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston, Inc., Boston, MA (1993). | MR | Zbl

[15] L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. Textbooks in Mathematics, revised edition. CRC Press, Boca Raton, FL (2015). | MR | Zbl

[16] H. Federer, Geometric measure theory. In Vol. 153 of Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag New York Inc., New York (1969). | MR | Zbl

[17] E.N. Gilbert and H.O. Pollak, Steiner minimal trees. SIAM J. Appl. Math. 16 (1968) 1–29. | DOI | MR | Zbl

[18] F. Iurlano, Fracture and plastic models as Γ-limits of damage models under different regimes. Adv. Calc. Var. 6 (2013) 165–189. | DOI | MR | Zbl

[19] L. Modica and S. Mortola, Un esempio di Γ-convergenza. Boll. Un. Mat. Ital. B 14 (1977) 285–299. | MR | Zbl

[20] E. Oudet and F. Santambrogio, A Modica-Mortola approximation for branched transport and applications. Arch. Ration. Mech. Anal. 201 (2011) 115–142. | DOI | MR | Zbl

[21] E. Paolini and E. Stepanov, Existence and regularity results for the Steiner problem. Calc. Var. Partial Differ. Equ. 46 (2013) 837–860. | DOI | MR | Zbl

[22] F. Santambrogio, Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling. Vol. 87 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser/Springer, Cham (2015). | DOI | MR | Zbl

[23] B. White, The deformation theorem for flat chains. Acta Math. 183 (1999) 255–271. | DOI | MR | Zbl

[24] B. White, Rectifiability of flat chains. Ann. Math. 150 (1999) 165–184. | DOI | MR | Zbl

[25] Q. Xia, Optimal paths related to transport problems. Commun. Contemp. Math. 5 (2003) 251–279. | DOI | MR | Zbl

[26] Q. Xia, Interior regularity of optimal transport paths. Calc. Var. Partial Differ. Equ. 20 (2004) 283–299. | DOI | MR | Zbl

Cité par Sources :