In Takagi [Phys. Rev. E 92 (2015) 023020], based on copepod observations, Takagi proposed a model to interpret the swimming behaviour of these microorganisms using sinusoidal paddling or sequential paddling followed by a recovery stroke in unison, and compares them invoking the concept of efficiency. Our aim is to provide an interpretation of Takagi’s results in the frame of optimal control theory and sub-Riemannian geometry. The maximum principle is used to select two types of periodic control candidates as minimizers: sinusoidal up to time reparameterization and the sequential paddling, interpreted as an abnormal stroke in sub-Riemannian geometry. Geometric analysis combined with numerical simulations are decisive tools to compute the optimal solutions, refining Takagi computations. A family of simple strokes with small amplitudes emanating from a center is characterized as an invariant of SR-geometry and allows to identify the metric used by the swimmer. The notion of efficiency is discussed in detail and related with normality properties of minimizers.
Accepté le :
DOI : 10.1051/cocv/2017071
Mots-clés : Stokes flow, optimal control theory, sub-Riemannian geometry, abnormal closed geodesics
@article{COCV_2019__25__A9_0, author = {Bettiol, P. and Bonnard, B. and Nolot, A. and Rouot, J.}, title = {Sub-Riemannian geometry and swimming at low {Reynolds} number: the {Copepod} case}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, publisher = {EDP-Sciences}, volume = {25}, year = {2019}, doi = {10.1051/cocv/2017071}, zbl = {1434.70061}, mrnumber = {3943362}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2017071/} }
TY - JOUR AU - Bettiol, P. AU - Bonnard, B. AU - Nolot, A. AU - Rouot, J. TI - Sub-Riemannian geometry and swimming at low Reynolds number: the Copepod case JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2019 VL - 25 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2017071/ DO - 10.1051/cocv/2017071 LA - en ID - COCV_2019__25__A9_0 ER -
%0 Journal Article %A Bettiol, P. %A Bonnard, B. %A Nolot, A. %A Rouot, J. %T Sub-Riemannian geometry and swimming at low Reynolds number: the Copepod case %J ESAIM: Control, Optimisation and Calculus of Variations %D 2019 %V 25 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2017071/ %R 10.1051/cocv/2017071 %G en %F COCV_2019__25__A9_0
Bettiol, P.; Bonnard, B.; Nolot, A.; Rouot, J. Sub-Riemannian geometry and swimming at low Reynolds number: the Copepod case. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 9. doi : 10.1051/cocv/2017071. http://www.numdam.org/articles/10.1051/cocv/2017071/
[1] On the Dido problem and plane isoperimetric problems. Acta Appl. Math. 57 (1999) 287–338. | DOI | MR | Zbl
and ,[2] Les métriques sous riemanniennes en dimension 3. Ph.D. thesis. Université de Rouen, France (1996).
,[3] Small sub-Riemannian balls on R3. J. Dyn. Control Syst. 2 (1996) 359–421. | DOI | MR | Zbl
, and ,[4] A geometric theory of swimming: Purcell’s swimmer and its symmetrized cousin. New J. Phys. 10 (2008) 063016. | DOI
and ,[5] The tangent space in sub-Riemannian geometry. J. Math. Sci. (New York) 83 (1997) 461–476. | DOI | MR | Zbl
,[6] Optimal strokes at low Reynolds number: a geometric and numerical study of Copepod and Purcell swimmers. SIAM J. Control Optim. 56 (2018) 1794–1822. | DOI | MR | Zbl
, and ,[7] Second order optimality conditions in the smooth case and applications in optimal control. ESAIM: COCV 13 (2007) 207–236. | Numdam | MR | Zbl
, and ,[8] The sphere and the cut locus at a tangency point in two dimensional almost-Riemannian geometry. J. Dyn. Control Syst. 17 (2011) 141–161. | DOI | MR | Zbl
, , and ,[9] Singular Trajectories and Their Role in Control Theory. Vol. 40 of Mathématiques and Applications. Springer-Verlag, Berlin (2003). | MR | Zbl
and ,[10] Control Theory and Singular Riemannian Geometry. Vol. 2016 of New Directions in Applied Mathematics. Springer, New York, Berlin, Cleveland, Ohio (1980) 11–27. | MR | Zbl
,[11] Optimal strokes for driftless swimmers: a general geometric approach. To appear in: ESAIM: COCV. DOI: (2017). | DOI | Numdam | MR | Zbl
, and ,[12] Contrôle optimal géométrique : méthodes homotopiques et applications. Ph.D. thesis. Institut Mathématiques de Bourgogne, Dijon, France (2012).
,[13] Géométrie sous-riemannienne. Séminaire Bourbaki 1995/96. In Vol. 241 of Astérisque (1997) 351–380. | Numdam | MR | Zbl
,[14] Choreographed swimming of copepod nauplii. J. R. Soc. Interface 12 (2015) 20150776. | DOI
, and ,[15] Note on the swimming of slender fish. J. Fluid Mech. 9 (1960) 305–317. | DOI | MR
,[16] Isoholonomic problems and some applications. Commun. Math. Phys. 128 (1990) 565–592. | DOI | MR | Zbl
,[17] Supplementary notes to: Dynamics of Purcell’s three-link microswimmer with a passive elastic tail. EPJ E 35 (2012) 1–9.
and ,[18] The Mathematical Theory of Optimal Processes. Interscience Publishers John Wiley & Sons, Inc., New York, London (1962). | Zbl
, , and ,[19] Life at low Reynolds number. Am. J. Phys. 45 (1977) 3–11. | DOI
,[20] Méthodes géométriques et numériques en contrôle optimal et applications au transfert orbital àpoussée faible et à la nage à faible nombre de Reynolds. Ph.D. thesis. Inria Sophia Antipolis Méditerranée, France (2016).
,[21] Swimming with stiff legs at low Reynolds number. Phys. Rev. E 92 (2015) 023020. | DOI
,[22] Optimal Control. Systems Theory, Control. In Modern Birkhäuser Classics. Birkhäuser, Basel (2010). | MR | Zbl
,[23] Necessary and sufficient conditions for local optimality of a periodic process. SIAM J. Control Optim. 28 (1990) 482–497. | DOI | MR | Zbl
and ,Cité par Sources :