The aim of this article is to present algorithms to compute the first conjugate time along a smooth extremal curve, where the trajectory ceases to be optimal. It is based on recent theoretical developments of geometric optimal control, and the article contains a review of second order optimality conditions. The computations are related to a test of positivity of the intrinsic second order derivative or a test of singularity of the extremal flow. We derive an algorithm called COTCOT (Conditions of Order Two and COnjugate Times), available on the web, and apply it to the minimal time problem of orbit transfer, and to the attitude control problem of a rigid spacecraft. This algorithm involves both normal and abnormal cases.
Mots clés : conjugate point, second-order intrinsic derivative, lagrangian singularity, Jacobi field, orbit transfer, attitude control
@article{COCV_2007__13_2_207_0, author = {Bonnard, Bernard and Caillau, Jean-Baptiste and Tr\'elat, Emmanuel}, title = {Second order optimality conditions in the smooth case and applications in optimal control}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {207--236}, publisher = {EDP-Sciences}, volume = {13}, number = {2}, year = {2007}, doi = {10.1051/cocv:2007012}, mrnumber = {2306634}, zbl = {1123.49014}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2007012/} }
TY - JOUR AU - Bonnard, Bernard AU - Caillau, Jean-Baptiste AU - Trélat, Emmanuel TI - Second order optimality conditions in the smooth case and applications in optimal control JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2007 SP - 207 EP - 236 VL - 13 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2007012/ DO - 10.1051/cocv:2007012 LA - en ID - COCV_2007__13_2_207_0 ER -
%0 Journal Article %A Bonnard, Bernard %A Caillau, Jean-Baptiste %A Trélat, Emmanuel %T Second order optimality conditions in the smooth case and applications in optimal control %J ESAIM: Control, Optimisation and Calculus of Variations %D 2007 %P 207-236 %V 13 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2007012/ %R 10.1051/cocv:2007012 %G en %F COCV_2007__13_2_207_0
Bonnard, Bernard; Caillau, Jean-Baptiste; Trélat, Emmanuel. Second order optimality conditions in the smooth case and applications in optimal control. ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 2, pp. 207-236. doi : 10.1051/cocv:2007012. http://www.numdam.org/articles/10.1051/cocv:2007012/
[1] Second order optimality condition for the time optimal problem. Matem. Sbornik 100 (1976) 610-643. English transl. in: Math. USSR Sbornik 29 (1976) 547-576. | Zbl
and ,[2] Symplectic geometry for optimal control, Nonlinear controllability and optimal control. Dekker, New York, Monogr. Textbooks Pure Appl. Math. 133 (1990) 263-277. | Zbl
and ,[3] Control theory from the geometric viewpoint, Encyclopedia of Mathematical Sciences, 87. Control Theory and Optimization, II. Springer-Verlag, Berlin (2004) 412 pp. | MR | Zbl
and ,[4] Abnormal sub-Riemannian geodesics: Morse index and rigidity. Ann. Inst. Henri Poincaré 13 (1996) 635-690. | Numdam | Zbl
and ,[5] On abnormal extremals for Lagrange variational problems. J. Math. Syst. Estim. Cont. 8 (1998) 87-118. | Zbl
and ,[6] Adifor 2.0: Automatic Differentiation of Fortran 77 Programs. IEEE Comput. Sci. Engrg. 3 (1996) 18-32.
, , and ,[7] Calculus of variations. Chelsea Publishing Co., New York (1973).
,[8] Feedback equivalence for nonlinear systems and the time optimal control problem. SIAM J. Control Optim. 29 (1991) 1300-1321. | Zbl
,[9] Introduction to nonlinear optimal control, in Advances Topics in Control Systems Theory, Lecture Notes from FAP 2004, F. Lamnabhi-Lagarrigue, A. Loria, E. Panteley Eds., Springer, Berlin (2005). | MR
and ,[10] The role of singular trajectories in control theory. Springer Verlag, New York (2003). | MR
and ,[11] Théorie des singularités de l'application entrée/sortie et optimalité des trajectoires singulières dans le problème du temps minimal. Forum Math. 5 (1993) 111-159. | Zbl
and ,[12] Geometric optimal control of elliptic Keplerian orbits. Discrete Contin. Dyn. Syst. 5 (2005) 929-956. | Zbl
, and ,[13] Cotcot: short reference manual, ENSEEIHT-IRIT Technical Report RT/APO/05/1 (2005) www.n7.fr/apo/cotcot.
, and ,[14] Zbl
, and , 3D Geosynchronous Transfer of a Satellite: Continuation on the Thrust. J. Opt. Theory Appl. 118 (2003) 541-565. |[15] Genericity results for singular trajectories. J. Diff. Geom. 73 (2006) 45-73. | Zbl
, and ,[16] Contrôle en temps minimal des réacteurs chimiques discontinus. Ph.D. Thesis, Univ. Rouen (1992).
,[17] Riemannian geometry. Springer-Verlag, Berlin (1987). | MR | Zbl
, and ,[18] Necessary conditions for singular extremals involving multiple control variables. SIAM J. Cont. 4 (1966) 716-731. | Zbl
,[19] Application of the theory of quadratic forms in Hilbert spaces to the calculus of variations. Pac. J. Math. 1 (1951) 525-582. | Zbl
,[20] Optimization theory - the finite dimensional case. Wiley (1975). | Zbl
,[21] Theory of extremal problems. North-Holland Publishing Co., Amsterdam (1979). | MR | Zbl
and ,[22] Singular extremals, in Topics in optimization, G. Leitman Ed., Academic Press, New York (1967) 63-101.
, and ,[23] The high-order maximum principle and its applications to singular extremals. SIAM J. Cont. Opt. 15 (1977) 256-293. | Zbl
,[24] The mathematical theory of optimal processes. Wiley Interscience (1962). | MR | Zbl
, , and ,[25] The index of second variation of a control system. Matem. Sbornik 113 (1980) 464-486. English transl. in: Math. USSR Sbornik 41 (1982) 383-401. | Zbl
,[26] Solving non-stiff ordinary differential equations - the state of the art. Technical Report sand75-0182, Sandia Laboratories, Albuquerque, New Mexico (1975). | Zbl
, and ,[27] Asymptotics of accessibility sets along an abnormal trajectory. ESAIM: COCV 6 (2001) 387-414. | Numdam | Zbl
,[28] Lectures on the calculus of variations and optimal control theory. Chelsea, New York (1980).
,[29] Trajectoires spatiales. CNES-Cepadues, Toulouse (1987).
,Cité par Sources :