Singular perturbations for a subelliptic operator
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1429-1451.

We study some classes of singular perturbation problems where the dynamics of the fast variables evolve in the whole space obeying to an infinitesimal operator which is subelliptic and ergodic. We prove that the corresponding ergodic problem admits a solution which is globally Lipschitz continuous and it has at most a logarithmic growth at infinity. The main result of this paper establishes that, as ϵ → 0, the value functions of the singular perturbation problems converge locally uniformly to the solution of an effective problem whose operator and terminal data are explicitly given in terms of the invariant measure for the ergodic operator.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2017063
Classification : 35B25, 49L25, 35J70, 35H20, 35R03, 35B37, 93E20
Mots-clés : Subelliptic equations, Heisenberg group, invariant measure, singular perturbations, viscosity solutions, degenerate elliptic equations
Mannucci, Paola 1 ; Marchi, Claudio 1 ; Tchou, Nicoletta 1

1
@article{COCV_2018__24_4_1429_0,
     author = {Mannucci, Paola and Marchi, Claudio and Tchou, Nicoletta},
     title = {Singular perturbations for a subelliptic operator},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1429--1451},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {4},
     year = {2018},
     doi = {10.1051/cocv/2017063},
     zbl = {1414.35019},
     mrnumber = {3922437},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2017063/}
}
TY  - JOUR
AU  - Mannucci, Paola
AU  - Marchi, Claudio
AU  - Tchou, Nicoletta
TI  - Singular perturbations for a subelliptic operator
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 1429
EP  - 1451
VL  - 24
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2017063/
DO  - 10.1051/cocv/2017063
LA  - en
ID  - COCV_2018__24_4_1429_0
ER  - 
%0 Journal Article
%A Mannucci, Paola
%A Marchi, Claudio
%A Tchou, Nicoletta
%T Singular perturbations for a subelliptic operator
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 1429-1451
%V 24
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2017063/
%R 10.1051/cocv/2017063
%G en
%F COCV_2018__24_4_1429_0
Mannucci, Paola; Marchi, Claudio; Tchou, Nicoletta. Singular perturbations for a subelliptic operator. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1429-1451. doi : 10.1051/cocv/2017063. http://www.numdam.org/articles/10.1051/cocv/2017063/

[1] O. Alvarez and M. Bardi, Ergodicity, stabilization, and singular perturbations for Bellman-Isaacs equations. Mem. Amer. Math. Soc.  204 (2010) 960 | MR | Zbl

[2] O. Alvarez and M. Bardi, Singular perturbations of nonlinear degenerate parabolic PDEs: a general convergence result. Arch. Ration. Mech. Anal.  170 (2003) 17–61 | DOI | MR | Zbl

[3] O. Alvarez, M. Bardi and C. Marchi, Multiscale problems and homogenization for second-order Hamilton Jacobi equations. J. Differ. Equ.  243 (2007) 349–387 | DOI | MR | Zbl

[4] M. Bardi and I. C. Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi Bellman equations. Systems and Control: Foundations and Applications. Birkhauser, Boston (1997) | MR | Zbl

[5] M. Bardi and A. Cesaroni, Optimal control with random parameters: a multiscale approach. Eur. J. Control 17 (2011) 30–45 | DOI | MR | Zbl

[6] M. Bardi, A. Cesaroni and L. Manca, Convergence by viscosity methods in multiscale financial models with stochastic volatility. SIAM J. Financial Math.  1 (2010) 230–265 | DOI | MR | Zbl

[7] E. Barucci, S. Polidoro and V. Vespri, Some results on partial differential equations and Asian options. Math. Models Methods Appl. Sci.  11 (2001) 475–497 | DOI | MR | Zbl

[8] M.G. Crandall, H. Ishii and P.L. Lions, User’s guide to viscosity solutions of second-order partial differential equations. Bull. Amer. Math. Soc.  27 (1992) 1–67 | DOI | MR | Zbl

[9] F. Da Lio and O. Ley, Uniqueness results for second-order Bellman-Isaacs equations under quadratic growth assumptions and applications. SIAM J. Control Optimiz.  45 (2006) 74–106 | DOI | MR | Zbl

[10] W.H. Fleming and H.M. Soner, Controlled Markov Processes and Viscosity Solutions. Springer–Verlag,  Berlin (1993) | MR | Zbl

[11] J.-P. Fouque, G. Papanicolaou and K.R. Sircar, Derivatives in financial markets with stochastic volatility. Cambridge University Press, Cambridge (2000) | MR | Zbl

[12] Y. Fujita, H. Ishii and P. Loreti, Asymptotic solutions of viscous Hamilton-Jacobi equations with Ornstein-Uhlenbeck operator. Comm. Partial Diff. Equ.  31 (2006) 827–848 | DOI | MR | Zbl

[13] D. Ghilli, Viscosity methods for large deviations estimates of multiscale stochastic processes. ESAIM: COCV 24 (2018) 605–637 | Numdam | MR | Zbl

[14] H.J. Kushner, Weak convergence methods and singularly perturbed stochastic control and filtering problems. Birkhauser, Boston (1990) | DOI | MR | Zbl

[15] Y. Kabanov and S. Pergamenshchikov, Two-scale stochastic systems. Asymptotic analysis and control. In Vol. 49 of  Stochastic Modelling and Applied Probability.  Springer–Verlag, Berlin (2003) | MR | Zbl

[16] H. Ishii, On the equivalence of two notions of weak solutions, viscosity solutions and distribution solutions. Funkcial. Ekvac.  38 (1995) 101–120 | MR | Zbl

[17] O. Ley and V.D. Nguyen, Gradient bounds for nonlinear degenerate parabolic equations and applications to large time behaviour of systems. Nonlin. Anal.  130 (2016) 76–101 | DOI | MR | Zbl

[18] P.L. Lions, Lectures at Collège de France 2014–2015. Available at: http://www.college-de-france.fr.

[19] P.L. Lions and M. Musiela, Ergodicity of diffusion processes. Cahiers du CEREMADE (2002) Available at: https://www.ceremade.dauphine.fr/

[20] P. Mannucci, C. Marchi and N.A. Tchou, The ergodic problem for some subelliptic operators with unbounded coefficients. Nonlin. Differ. Equ. Appl.  23 (2016) 47 | DOI | MR | Zbl

[21] P.  Mannucci, C. Marchi and N.A. Tchou, Asymptotic behaviour for operators of Grushin type: invariant measure and singular perturbations. Discrete Contin. Dyn. Syst.- S  12 (2019) 119–128 | MR

[22] P. Mannucci and B. Stroffolini, Periodic homogenization under a hypoellipticity condition. Nonlin. Differ. Equ. Appl.  22 (2015) 579–600 | DOI | MR | Zbl

[23] P. Wilmott, S. Howison and J. Dewynne, The mathematics of financial derivatives. Cambridge University Press, Cambridge (1995) | DOI | MR | Zbl

Cité par Sources :