Closed 𝓐-p Quasiconvexity and Variational Problems with Extended Real-Valued Integrands
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1605-1624.

This paper relates the lower semi-continuity of an integral functional in the compensated compactness setting of vector fields satisfying a constant-rank first-order differential constraint, to closed 𝓐-p quasiconvexity of the integrand. The lower semi-continuous envelope of relaxation is identified for continuous, but potentially extended real-valued integrands. We discuss the continuity assumption and show that when it is dropped our notion of quasiconvexity is still equivalent to lower semi-continuity of the integrand under an additional assumption on the characteristic cone of 𝓐.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2017062
Classification : 35E99, 49J45
Mots-clés : Closed A-p quasiconvexity, extended real-valued integrands, semi-continuity, Young measures, relaxation
Prosinski, Adam 1

1
@article{COCV_2018__24_4_1605_0,
     author = {Prosinski, Adam},
     title = {Closed 𝓐-p {Quasiconvexity} and {Variational} {Problems} with {Extended} {Real-Valued} {Integrands}},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1605--1624},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {4},
     year = {2018},
     doi = {10.1051/cocv/2017062},
     zbl = {1417.49012},
     mrnumber = {3922436},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2017062/}
}
TY  - JOUR
AU  - Prosinski, Adam
TI  - Closed 𝓐-p Quasiconvexity and Variational Problems with Extended Real-Valued Integrands
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 1605
EP  - 1624
VL  - 24
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2017062/
DO  - 10.1051/cocv/2017062
LA  - en
ID  - COCV_2018__24_4_1605_0
ER  - 
%0 Journal Article
%A Prosinski, Adam
%T Closed 𝓐-p Quasiconvexity and Variational Problems with Extended Real-Valued Integrands
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 1605-1624
%V 24
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2017062/
%R 10.1051/cocv/2017062
%G en
%F COCV_2018__24_4_1605_0
Prosinski, Adam. Closed 𝓐-p Quasiconvexity and Variational Problems with Extended Real-Valued Integrands. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1605-1624. doi : 10.1051/cocv/2017062. http://www.numdam.org/articles/10.1051/cocv/2017062/

[1] E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations. Arch. Ration. Mech. Anal. 86 (1984) 125–145 | DOI | MR | Zbl

[2] A. Arroyo−Rabasa, G. De Philippis and F. Rindler, Lower semicontinuity and relaxation of linear-growth integral functionals under PDE constraints. Preprint 1701.02230 (2017) | Zbl

[3] M. Baía, M. Chermisi, J. Matias and P.M. Santos, Lower semicontinuity and relaxation of signed functionals with linear growth in the context of A-quasiconvexity. Calc. Var. Partial Differ. Equ. 47 (2013) 1–34 | DOI | MR | Zbl

[4] J.M. Ball, B. Kirchheim and J. Kristensen, Regularity of quasiconvex envelopes. Calc. Var. Partial Differ. Equ. 11 (2000) 333–359 | DOI | MR | Zbl

[5] J. M. Ball and F. Murat, 1p-quasiconvexity and variational problems for multiple integrals. J. Functional Anal. 58 (1984) 225–253 | DOI | MR | Zbl

[6] H. B. Belgacem, Relaxation of singular functionals defined on Sobolev spaces. ESAIM: COCV 5 (2000) 71–85 | Numdam | MR | Zbl

[7] A. Ben−Israel and T.N.E. Greville, Generalized Inverses: Theory and Applications. CMS Books in Math. Springer (2003) | MR | Zbl

[8] A. Braides, I. Fonseca and G. Leoni, A-quasiconvexity: relaxation and homogenization. ESAIM: COCV 5 (2000) 539–577 | Numdam | MR | Zbl

[9] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations. Springer Sci. Business Media (2010) | MR | Zbl

[10] S.L. Campbell and C.D. Meyer Jr., Generalized Inverses of Linear Transformations. Dover Publications (1991) | MR | Zbl

[11] B. Dacorogna, Weak Continuity and Weak Lower Semicontinuity of Non-Linear Functionals. Lect. Notes Math. Springer Verlag (1982) | DOI | MR | Zbl

[12] B. Dacorogna, Direct methods in the calculus of variations. Springer Sci. Business Media (2007) | MR | Zbl

[13] A. De Simone, Energy minimizers for large ferromagnetic bodies. Arch. Ration. Mech. Anal. 125 (1993) 99–143 | DOI | MR | Zbl

[14] R.J. Diperna and A.J. Majda, Oscillations and concentrations in weak solutions of the incompressible fluid equations. Commun. Math. Phys. 108 (1987) 667–689 | DOI | MR | Zbl

[15] J.-C. Evard, On Matrix Functions which Commute with their Derivative. Lin. Algebr. Appl. 68 (1985) 145–178 | DOI | MR | Zbl

[16] J.-C. Evard, On the Existence of Bases of Class Cp of the Kernel and the Image of a Matrix Function. Linear Algebra and its Appl. 135 (1990) 33–67 | DOI | MR | Zbl

[17] I. Fonseca, M. KruĆŸĂ­k, Oscillations and concentrations generated by A-free mappings and weak lower semicontinuity of integral functionals. ESAIM: COCV 16 (2010) 472–502 | Numdam | MR | Zbl

[18] I. Fonseca, G. Leoni and S. MĂŒller, A-quasiconvexity: weak-star convergence and the gap. Ann. Inst. Henri PoincarĂ©, Anal. non Lin. 21 (2004) 209–236 | DOI | Numdam | MR | Zbl

[19] I. Fonseca and J. MalĂœ, Relaxation of multiple integrals below the growth exponent. Ann. Inst. Henri PoincarĂ© (C), Non Lin. Anal. 14.3 (1997) 309–338 | DOI | Numdam | MR | Zbl

[20] I. Fonseca and S. MĂŒller, A-quasiconvexity, lower semicontinuity, and Young measures. SIAM J. Math. Anal. 30 (1999) 1355–1390 | DOI | MR | Zbl

[21] O.A. Hafsa and J.-P. Mandallena, Relaxation theorems in nonlinear elasticity. Ann.’ Institut Henri PoincarĂ© (C), Non Lin. Anal. 25 (2008) 135–148 | DOI | Numdam | MR | Zbl

[22] O.A. Hafsa and J.-P. Mandallena, Relaxation and 3d-2d Passage Theorems in Hyperelasticity. J. Convex Anal. 19 (2012) 759–794 | MR | Zbl

[23] T. Kato, Perturbation theory for linear operators. SpringerSci. Business Media (2013) | Zbl

[24] D. Kinderlehrer and P. Pedregal, Gradient Young measures generated by sequences in Sobolev spaces. J. Geometric Anal. 4 (1994) 59–90 | DOI | MR | Zbl

[25] J. Kristensen, Lower semicontinuity of quasi-convex integrals in BV. Calc. Var. Partial Differ. Equ. 7 (1998) 249–261 | DOI | MR | Zbl

[26] J. Kristensen, A necessary and sufficient condition for lower semicontinuity. Nonlin. Anal.: Theory, Methods Appl. 120 (2015) 43–56 | DOI | MR | Zbl

[27] K. Kuratowski and C. Ryll-Nardzewski A general theorem on selectors. Bull. Acad. Polon. Sci. Ser. Sci.Math., Astronom. Phys. 13 (1965) 397–403 | MR | Zbl

[28] P. Marcellini, Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals. Manuscr. Math. 51 (1985) 1–28 | DOI | MR | Zbl

[29] P. Marcellini, On the definition and the lower semicontinuity of certain quasiconvex integrals. Ann. IHP, Anal. non Lin. 3 (1986) 391–409 | Numdam | MR | Zbl

[30] S. MĂŒller, Rank-one convexity implies quasiconvexity on diagonal matrices. Inter. Math. Res. Notices 20 (1999) 1087–1095 | DOI | MR | Zbl

[31] F. Murat, CompacitĂ© par compensation. Ann. IHP, Anal. non Lin.Annali della Scuola Normale Superiore di Pisa-Classe di Sci. 5 (1978), 489–507 | Numdam | MR | Zbl

[32] F. Murat, CompacitĂ© par compensation: condition nĂ©cessaire et suffisante de continuitĂ© faible sous une hypothese de rang constant. Annali della Scuola Normale Superiore di Pisa-Classe di Sci. 8 (1981) 69–102 | Numdam | Zbl

[33] P. Pedregal, Jensen’s inequality in the calculus of variations. Differ. Integral Equ. 7 (1994) 57–72 | MR | Zbl

[34] P. Pedregal, Parametrized measures and variational principles. BirkhÀuser (1997) | MR | Zbl

[35] P.M. Santos, A-quasiconvexity with variable coefficients. Proc. of the Royal Society of Edinburgh: Section A Math. 134 (2004) 1219–1237 | DOI | MR | Zbl

[36] E.M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press (1971) | MR

[37] M. A. Sychev, A new approach to Young measure theory, relaxation and convergence in energy. Ann. Inst. Henri PoincarĂ© (C), Non-Lin. Anal. 16 (1999) 773–812 | DOI | Numdam | MR | Zbl

[38] M. A. Sychev, Theorems on lower semicontinuity and relaxation for integrands with fast growth. Siberian Math. J. 46 (2005) 540–554 | DOI | MR | Zbl

[39] M. A. Sychev, Young measures as measurable functions and their applications to variational problems. J. Math. Sci. 132 (2006) 359–370 | DOI | MR | Zbl

[40] M.A. Sychev, Lower semicontinuity and relaxation for integral functionals with p(x) and p(x, u) growth. Siberian Math. J 52 (2011) 1108–1123 | DOI | MR | Zbl

[41] L. Tartar, Compensated compactness and applications to partial differential equations. Nonlin. Anal. Mech. Heriot-Watt Symposium 4 (1979) 136–211 | MR | Zbl

Cité par Sources :