Oscillations and concentrations generated by 𝒜-free mappings and weak lower semicontinuity of integral functionals
ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 2, pp. 472-502.

DiPerna’s and Majda’s generalization of Young measures is used to describe oscillations and concentrations in sequences of maps {u k } k L p (Ω; m ) satisfying a linear differential constraint 𝒜u k =0. Applications to sequential weak lower semicontinuity of integral functionals on 𝒜-free sequences and to weak continuity of determinants are given. In particular, we state necessary and sufficient conditions for weak* convergence of detϕ k * det ϕ in measures on the closure of Ω n if ϕ k ϕ in W 1,n (Ω; n ). This convergence holds, for example, under Dirichlet boundary conditions. Further, we formulate a Biting-like lemma precisely stating which subsets Ω j Ω must be removed to obtain weak lower semicontinuity of u ΩΩ j v(u(x))dx along {u k }L p (Ω; m ) ker 𝒜. Specifically, Ω j are arbitrarily thin “boundary layers”.

DOI : 10.1051/cocv/2009006
Classification : 49J45, 35B05
Mots clés : concentrations, oscillations, Young measures
@article{COCV_2010__16_2_472_0,
     author = {Fonseca, Irene and Kru\v{z}{\'\i}k, Martin},
     title = {Oscillations and concentrations generated by ${\mathcal {A}}$-free mappings and weak lower semicontinuity of integral functionals},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {472--502},
     publisher = {EDP-Sciences},
     volume = {16},
     number = {2},
     year = {2010},
     doi = {10.1051/cocv/2009006},
     mrnumber = {2654203},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2009006/}
}
TY  - JOUR
AU  - Fonseca, Irene
AU  - Kružík, Martin
TI  - Oscillations and concentrations generated by ${\mathcal {A}}$-free mappings and weak lower semicontinuity of integral functionals
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2010
SP  - 472
EP  - 502
VL  - 16
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2009006/
DO  - 10.1051/cocv/2009006
LA  - en
ID  - COCV_2010__16_2_472_0
ER  - 
%0 Journal Article
%A Fonseca, Irene
%A Kružík, Martin
%T Oscillations and concentrations generated by ${\mathcal {A}}$-free mappings and weak lower semicontinuity of integral functionals
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2010
%P 472-502
%V 16
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2009006/
%R 10.1051/cocv/2009006
%G en
%F COCV_2010__16_2_472_0
Fonseca, Irene; Kružík, Martin. Oscillations and concentrations generated by ${\mathcal {A}}$-free mappings and weak lower semicontinuity of integral functionals. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 2, pp. 472-502. doi : 10.1051/cocv/2009006. http://www.numdam.org/articles/10.1051/cocv/2009006/

[1] J.J. Alibert and G. Bouchitté, Non-uniform integrability and generalized Young measures. J. Convex Anal. 4 (1997) 125-145. | Zbl

[2] J.M. Ball, A version of the fundamental theorem for Young measures, in PDEs and Continuum Models of Phase Transition, M. Rascle, D. Serre and M. Slemrod Eds., Lect. Notes Phys. 344, Springer, Berlin (1989) 207-215. | Zbl

[3] J.M. Ball and F. Murat, W1,p-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58 (1984) 225-253. | Zbl

[4] J.M. Ball and K.-W. Zhang, Lower semicontinuity of multiple integrals and the biting lemma. Proc. Roy. Soc. Edinb. A 114 (1990) 367-379. | Zbl

[5] A. Braides, I. Fonseca and G. Leoni, A-quasiconvexity: relaxation and homogenization. ESAIM: COCV 5 (2000) 539-577. | Numdam | Zbl

[6] J.K. Brooks and R.V. Chacon, Continuity and compactness in measure. Adv. Math. 37 (1980) 16-26. | Zbl

[7] B. Dacorogna, Direct Methods in the Calculus of Variations. Springer, Berlin (1989). | Zbl

[8] A. Desimone, Energy minimizers for large ferromagnetic bodies. Arch. Rat. Mech. Anal. 125 (1993) 99-143. | Zbl

[9] R.J. Diperna and A.J. Majda, Oscillations and concentrations in weak solutions of the incompressible fluid equations. Commun. Math. Phys. 108 (1987) 667-689. | Zbl

[10] N. Dunford and J.T. Schwartz, Linear Operators, Part I. Interscience, New York (1967). | Zbl

[11] R. Engelking, General topology. Second Edition, PWN, Warszawa (1985). | Zbl

[12] L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, Inc. Boca Raton (1992). | Zbl

[13] I. Fonseca, Lower semicontinuity of surface energies. Proc. Roy. Soc. Edinb. A 120 (1992) 95-115. | Zbl

[14] I. Fonseca and G. Leoni, Modern Methods in the Calculus of Variations: Lp Spaces. Springer (2007). | Zbl

[15] I. Fonseca and S. Müller, 𝒜-quasiconvexity, lower semicontinuity, and Young measures. SIAM J. Math. Anal. 30 (1999) 1355-1390. | Zbl

[16] I. Fonseca, S. Müller and P. Pedregal, Analysis of concentration and oscillation effects generated by gradients. SIAM J. Math. Anal. 29 (1998) 736-756. | Zbl

[17] J. Hogan, C. Li, A. Mcintosh and K. Zhang, Global higher integrability of Jacobians on bounded domains. Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000) 193-217. | Numdam | Zbl

[18] A. Kałamajska and M. Kružík, Oscillations and concentrations in sequences of gradients. ESAIM: COCV 14 (2008) 71-104. | Numdam | Zbl

[19] D. Kinderlehrer and P. Pedregal, Characterization of Young measures generated by gradients. Arch. Rat. Mech. Anal. 115 (1991) 329-365. | Zbl

[20] D. Kinderlehrer and P. Pedregal, Weak convergence of integrands and the Young measure representation. SIAM J. Math. Anal. 23 (1992) 1-19. | Zbl

[21] D. Kinderlehrer and P. Pedregal, Gradient Young measures generated by sequences in Sobolev spaces. J. Geom. Anal. 4 (1994) 59-90. | Zbl

[22] J. Kristensen, Lower semicontinuity in spaces of weakly differentiable functions. Math. Ann. 313 (1999) 653-710. | Zbl

[23] M. Kružík and T. Roubíček, Explicit characterization of Lp-Young measures. J. Math. Anal. Appl. 198 (1996) 830-843. | Zbl

[24] M. Kružík and T. Roubíček, On the measures of DiPerna and Majda. Mathematica Bohemica 122 (1997) 383-399. | Zbl

[25] M. Kružík and T. Roubíček, Optimization problems with concentration and oscillation effects: relaxation theory and numerical approximation. Numer. Funct. Anal. Optim. 20 (1999) 511-530. | Zbl

[26] C. Licht, G. Michaille and S. Pagano, A model of elastic adhesive bonded joints through oscillation-concentration measures. J. Math. Pures Appl. 87 (2007) 343-365. | Zbl

[27] P. Marcellini, Approximation of quasiconvex functions and lower semicontinuity of multiple integrals. Manuscripta Math. 51 (1985) 1-28. | Zbl

[28] C.B. Morrey, Multiple Integrals in the Calculus of Variations. Springer, Berlin (1966).

[29] S. Müller, Higher integrability of determinants and weak convergence in L1. J. Reine Angew. Math. 412 (1990) 20-34. | Zbl

[30] S. Müller, Variational models for microstructure and phase transisions. Lect. Notes Math. 1713 (1999) 85-210. | Zbl

[31] P. Pedregal, Relaxation in ferromagnetism: the rigid case, J. Nonlinear Sci. 4 (1994) 105-125. | Zbl

[32] P. Pedregal, Parametrized Measures and Variational Principles. Birkäuser, Basel (1997). | Zbl

[33] T. Roubíček, Relaxation in Optimization Theory and Variational Calculus. W. de Gruyter, Berlin (1997). | Zbl

[34] M.E. Schonbek, Convergence of solutions to nonlinear dispersive equations. Comm. Partial Diff. Eq. 7 (1982) 959-1000. | Zbl

[35] L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear Analysis and Mechanics, R.J. Knops Ed., Heriott-Watt Symposium IV, Pitman Res. Notes in Math. 39, San Francisco (1979). | Zbl

[36] L. Tartar, Mathematical tools for studying oscillations and concentrations: From Young measures to H-measures and their variants, in Multiscale problems in science and technology. Challenges to mathematical analysis and perspectives, N. Antonič, C.J. Van Duijin and W. Jager Eds., Proceedings of the conference on multiscale problems in science and technology, held in Dubrovnik, Croatia, September 3-9, 2000, Springer, Berlin (2002). | Zbl

[37] M. Valadier, Young measures, in Methods of Nonconvex Analysis, A. Cellina Ed., Lect. Notes Math. 1446, Springer, Berlin (1990) 152-188. | Zbl

[38] J. Warga, Optimal Control of Differential and Functional Equations. Academic Press, New York (1972). | Zbl

[39] L.C. Young, Generalized curves and the existence of an attained absolute minimum in the calculus of variations. Comptes Rendus de la Société des Sciences et des Lettres de Varsovie, Classe III 30 (1937) 212-234. | JFM | Zbl

Cité par Sources :