This paper is the first part of an ongoing project aimed at providing a local minimality criterion, based on a second variation approach, for the triple point configurations of the Mumford-Shah functional.
Accepté le :
DOI : 10.1051/cocv/2017010
Mots-clés : Calculus of variations, local minimality, mumford-Shah functional, free discontinuity problems, second variation
@article{COCV_2018__24_1_401_0, author = {Cristoferi, Riccardo}, title = {A second order local minimality criterion for the triple junction singularity of the {Mumford-Shah} functional}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {401--435}, publisher = {EDP-Sciences}, volume = {24}, number = {1}, year = {2018}, doi = {10.1051/cocv/2017010}, mrnumber = {3843190}, zbl = {1401.49019}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2017010/} }
TY - JOUR AU - Cristoferi, Riccardo TI - A second order local minimality criterion for the triple junction singularity of the Mumford-Shah functional JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2018 SP - 401 EP - 435 VL - 24 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2017010/ DO - 10.1051/cocv/2017010 LA - en ID - COCV_2018__24_1_401_0 ER -
%0 Journal Article %A Cristoferi, Riccardo %T A second order local minimality criterion for the triple junction singularity of the Mumford-Shah functional %J ESAIM: Control, Optimisation and Calculus of Variations %D 2018 %P 401-435 %V 24 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2017010/ %R 10.1051/cocv/2017010 %G en %F COCV_2018__24_1_401_0
Cristoferi, Riccardo. A second order local minimality criterion for the triple junction singularity of the Mumford-Shah functional. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 1, pp. 401-435. doi : 10.1051/cocv/2017010. http://www.numdam.org/articles/10.1051/cocv/2017010/
[1] The calibration method for the Mumford-Shah functional and free-discontinuity problems. Calc. Var. Partial Differ. Equ. 16 (2003) 299–333 | DOI | MR | Zbl
, and[2] Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York (2000) | MR | Zbl
, and ,[3] Stable regular critical points of the Mumford-Shah functional are local minimizers. Ann. Inst. Henri Poincaré Anal. Non Linéaire 32 (2015) 533–570 | DOI | Numdam | MR | Zbl
and ,[4] A second order minimality condition for the Mumford-Shah functional. Calc. Var. Partial Differ. Equ. 33 (2008) 37–74 | DOI | MR | Zbl
, and ,[5] Improved convergence theorems for bubble clusters. I. The planar case. Indiana Univ. Mat. J. 65 (2016) 1979–2050 | DOI | MR | Zbl
, and ,[6] Sharp stability inequalities for planar double bubbles. Preprint (2015) | arXiv | MR
, and ,[7] A variational method in image segmentation: existence and approximation results. Acta Math. 168 (1992) 89–151 | DOI | MR | Zbl
, and ,[8] Existence theorem for a minimum problem with free discontinuity set. Arch. Rational Mech. Anal. 108 (1989) 195–218 | DOI | MR | Zbl
, and ,[9] Elliptic problems in nonsmooth domains, Vol. 24 of Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston, MA (1985) | MR | Zbl
,[10] On optimal regularity of free boundary problems and a conjecture of De Giorgi. Commun. Pure Appl. Math. 58 (2005) 1051–1076 | DOI | MR | Zbl
, and ,[11] Energy release rate and stress intensity factor in antiplane elasticity. J. Math. Pures Appl. 95 (2011) 565–584 | DOI | MR | Zbl
and ,[12] Improved convergence theorems for bubble clusters. II. The three-dimensional case. Preprint (2015) | arXiv | MR
and ,[13] Lower semicontinuity for functionals with free discontinuities. Arch. Rational Mech. Anal. 159 (2001) 273–294 | DOI | MR | Zbl
and ,[14] Local calibrations for minimizers of the Mumford-Shah functional with a triple junction. Commun. Contemporary Math. 4 (2002) 297–326 | DOI | MR | Zbl
,[15] Local calibrations for minimizers of the Mumford-Shah functional with a regular discontinuity set. Ann. Inst. Henri Poincaré Anal. Non Linéaire 18 (2001) 403–436 | DOI | Numdam | MR | Zbl
and ,[16] Variational models in image segmentation. Birkhäuser (1994)
and ,[17] Global calibrations for the non-homogeneous Mumford-Shah functional. Ann. Sc. Norm. Super. Pisa Cl. Sci. 1 (2002) 603–648 | Numdam | MR | Zbl
,[18] Boundary detection by minimizing functionals, I. Proc. IEEE Conf. on Comouter Vision and Pattern recognition 42 (1989) 577–685
and ,[19] Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42 (1989) 577–685 | DOI | MR | Zbl
and ,[20] Lectures on geometric measure theory, Vol. 3 of Proceedings of the Centre for Mathematical Analysis. Australian National University, Australian National University Centre for Mathematical Analysis, Canberra (1983) | MR | Zbl
,Cité par Sources :