On stability of nonlinear neutral functional differential equations
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 1, pp. 89-104.

We address the challenging problem of the exponential stability of nonlinear time-varying functional differential equations of neutral type. By a novel approach, we present explicit sufficient conditions for the exponential stability of nonlinear time-varying neutral functional differential equations. A discussion of the obtained results and illustrative examples are given.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2016075
Classification : 34K20
Mots-clés : Functional differential equation, neutral equation, exponential stability
Anh Ngoc, Pham Huu 1 ; Tran, Thai Bao 2 ; Tinh, Cao Thanh 3

1 Department of Mathematics, Vietnam National University-HCMC, International University, Sai Gon, Vietnam.
2 Department of Information Systems, Vietnam national university-HCMC, University of Information Technology, Thu Duc district, Saigon, Vietnam.
3 Department of Mathematics, Vietnam national university-HCMC, University of Information Technology, Thu Duc district, Saigon, Vietnam.
@article{COCV_2018__24_1_89_0,
     author = {Anh Ngoc, Pham Huu and Tran, Thai Bao and Tinh, Cao Thanh},
     title = {On stability of nonlinear neutral functional differential equations},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {89--104},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {1},
     year = {2018},
     doi = {10.1051/cocv/2016075},
     mrnumber = {3764135},
     zbl = {1410.34220},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2016075/}
}
TY  - JOUR
AU  - Anh Ngoc, Pham Huu
AU  - Tran, Thai Bao
AU  - Tinh, Cao Thanh
TI  - On stability of nonlinear neutral functional differential equations
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 89
EP  - 104
VL  - 24
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2016075/
DO  - 10.1051/cocv/2016075
LA  - en
ID  - COCV_2018__24_1_89_0
ER  - 
%0 Journal Article
%A Anh Ngoc, Pham Huu
%A Tran, Thai Bao
%A Tinh, Cao Thanh
%T On stability of nonlinear neutral functional differential equations
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 89-104
%V 24
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2016075/
%R 10.1051/cocv/2016075
%G en
%F COCV_2018__24_1_89_0
Anh Ngoc, Pham Huu; Tran, Thai Bao; Tinh, Cao Thanh. On stability of nonlinear neutral functional differential equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 1, pp. 89-104. doi : 10.1051/cocv/2016075. http://www.numdam.org/articles/10.1051/cocv/2016075/

R.P. Agarwal and S.R. Grace, Asymptotic stability of certain neutral differential equations. Math. Comput. Model. 31 (2000) 9–15. | DOI | MR | Zbl

A. Bellen and N. Guglielmi and A.E. Ruehli, Methods for linear systems of circuit delay differential equations of neutral type. IEEE Transactions on Circuits and Systems: Fundamental theory and Applications 46 (1999) 212–216. | DOI | MR | Zbl

R. Bellman and K.L. Cooke, Differential Difference Equations. The Rand Corporation USA (1963). | MR

A. Berman and R.J. Plemmons, Nonnegative Matrices in Mathematical Sciences. Acad. Press, New York (1979). | MR | Zbl

C.J. Cheng, T.L. Liao, J.J. Yan and C.C. Hwang, Globally asymptotic stability of a class of neutral-type with delays. IEEE Trans. Syst. Man Cybern. B 36 (2006) 1191–1195. | DOI

M.A. Cruz and J.K. Hale, Stability of functional differential equations of neutral type. J. Differ. Equ. 7 (1970) 334–355. | DOI | MR | Zbl

J. Dieudonné, Foundations of Modern Analysis. Academic Press (1988). | MR | Zbl

E. Fridman, New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type. Syst. Control Lett. 43 (2001) 309–319. | DOI | MR | Zbl

M. Gil, Exponential stability of nonlinear neutral type systems. Arch. Control Sci. 22 (2012) 125–143. | DOI | MR | Zbl

J.K. Hale and P.M. Amorez, Stability in neutral equations. Nonlin. Anal. Theory, Methods Appl. 1 (1977) 161–173. | DOI | MR | Zbl

J.K. Hale and S.M.V. Lunel, Introduction to Functional Differential Equations. Springer-Verlag Berlin, Heidelberg, New york (1993). | MR | Zbl

V. Kharitonov, S. Mondie and J. Collado, Exponential estimates for neutral time-delay systems: An LMI Approach. IEEE Trans. Autom. Control 50 (2005) 666–670. | DOI | MR | Zbl

V.B. Kolmanovskii and A. Myshkis, Appl. Theory Funct. Differ. Equ. Dordrecht, the Neitherlands: Kluwer (1996). | MR

L.M. Li, Stability of linear neutral delay-differential systems. Bull. Austr. Math. Soc. 38 (1988) 339–344. | DOI | MR | Zbl

Y. Liu, S.M. Lee, O.M. Kwon and Park H. Ju, Delay-dependent exponential stability criteria for neutral systems with interval time-varying delays and nonlinear perturbations. J. Franklin Inst. 350 (2013) 3313–3327. | DOI | MR | Zbl

H. Li and K. Gu, Discretized LyapunovKrasovskii functional for coupled differential difference equations with multiple delay channels. Automatica 46 (2010)902–909. | MR | Zbl

S.I. Niculescu and B. Brogliato, Force measurement time-delays and contact instability phenomenon. Eur. J. Control 5 (1999) 279–289. | DOI | Zbl

P.H.A. Ngoc and H. Trinh, Novel criteria for exponential stability of linear neutral time-varying differential systems. IEEE Trans. Autom. Control 61 (2016) 1590–1594. | DOI | MR | Zbl

J. Shen and W.X. Zheng, Positivity and stability of coupled differential difference equations with time-varying delays. Automatica 57 (2015) 123–127. | DOI | MR | Zbl

W. Rudin, Principles of Mathematical Analysis. McGraw-Hill Science (1976). | MR | Zbl

A.P. Tchangani, M. Dambrine, J.P. Richard and V. Kolmanovskii, Stability of Nonlinear Differential Equations with Distributed Delay. Nonlin. Anal. Theory, Methods Appl. 34 (1998) 1081–1095. | DOI | MR | Zbl

A.P. Tchangani, M. Dambrine and J.P. Richard, Stability, attraction domains, and ultimate boundedness for nonlinear neutral systems. Math. Comput. Simul. 45 (1998) 291–298. | DOI | MR | Zbl

Z. Yi, Stability of neutral Lotka-Volterra systems. J. Math. Anal. Appl. 199 (1996) 391–402. | DOI | MR | Zbl

K. Zhang and D.Q. Cao, Further results on asymptotic stability of linear neutral systems with multiple delays. J. Franklin Inst. 344 (2017) 858–866. | DOI | MR | Zbl

Cité par Sources :