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Abstract. We address the challenging problem of the exponential stability of nonlinear time-varying
functional differential equations of neutral type. By a novel approach, we present explicit sufficient con-
ditions for the exponential stability of nonlinear time-varying neutral functional differential equations.
A discussion of the obtained results and illustrative examples are given.
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1. Introduction

Delay differential equations of neutral type have many applications including population models, lossless
transmission lines, chemical reactors, partial element equivalent circuits, control systems, electrodynamics mix-
ing liquids, neutron transportation, see [2,11,13,17]. In qualitative analysis of such systems, problems of stability
of solutions play an important role. That is why problems of stability of delay differential equations of neutral
type have attracted a great interest of researchers during the past decades, see e.g. [1,3,8,24] and the references
therein.

The traditional approaches to analyze stability of delay differential equations of neutral type are Lyapunov’s
method and its variants, see e.g. [8, 11, 13, 15, 23, 24]. However, it is difficult to construct a Lyapunov function
for such equations. Most of the existing stability conditions for time-varying delay differential equations of
neutral type in the literature are given in terms of matrix inequalities or differential inequalities. In particular,
stability analysis of nonlinear time-varying functional differential equations of neutral type is very difficult and
complicated. Therefore, there have not been many explicit stability conditions available for such equations. Using
Lyapunov functions and the comparison principle, several sufficient conditions for asymptotic stability of some
specific classes of nonlinear neutral differential equations have been reported in some papers published a long

Keywords and phrases. Functional differential equation, neutral equation, exponential stability.

∗ This research is supported by Vietnam National University Ho Chi Minh City (VNU-HCM) under the Grant Number
C2016-26-03.
1 Department of Mathematics, Vietnam National University-HCMC, International University, Sai Gon, Vietnam.
phangoc@hcmiu.edu.vn
2 Department of Information Systems, Vietnam national university-HCMC, University of Information Technology, Thu Duc
district, Saigon, Vietnam. trantb@uit.edu.vn.
3 Department of Mathematics, Vietnam national university-HCMC, University of Information Technology, Thu Duc district,
Saigon, Vietnam. tinhct@uit.edu.vn.

Article published by EDP Sciences c© EDP Sciences, SMAI 2018

https://doi.org/10.1051/cocv/2016075
http://www.esaim-cocv.org
http://www.edpsciences.org


90 PHAM HUU ANH NGOC ET AL.

time ago, see e.g. [6, 11, 13, 21, 22]. Recently, some abstract sufficient conditions for the exponential stability of
semi-linear neutral functional differential equations were given in [9].

In this paper, we present a novel approach to the exponential stability of nonlinear time-varying functional
differential equations of neutral type. Our approach is based on a system transformation and the comparison
principle. More precisely, using a simple system transformation, it is to show that solutions of the nonlinear
neutral functional differential equation satisfy a coupled differential-difference equation (see e.g. [16]). Then,
a positive linear coupled differential-difference equation (see e.g. [19]) is given, which stands for an “upper
bound” of the coupled difference-differential system. Next, explicit stability conditions for the positive linear
coupled differential-difference equation are provided and it is to prove that these conditions ensure stability
of the coupled differential-difference equation and that of the nonlinear neutral functional differential equation
(using the comparison principle).

Consequently, new explicit sufficient conditions for the exponential stability of nonlinear time-varying func-
tional differential equations of neutral type are derived. Both delay-dependent and delay-independent stability
conditions are presented. To the best of our knowledge, Theorem 3.3, Corollary 3.5, Theorem 4.1 of this pa-
per are original. The stability conditions obtained are quite simple, easy to use. Furthermore, they have some
potential applications, for example, they can be applied to study behavior of solutions of neutral delay logistic
equations [23] and exponential stability of equilibria of various classes of neural networks of neutral type [5].

The organization of this paper is as follows. In the next section, we give some notations and preliminary
results which will be used in what follows. The main results are presented in Section 3. Some new explicit
sufficient conditions for the exponential stability of time-varying functional differential equations of neutral
type are given. A brief discussion of the obtained results is given.

2. Preliminaries

Let N be the set of all natural numbers. For given m ∈ N, let m := {1, 2, . . . , m}. For given integers l, q ≥ 1, Rl

denotes the l-dimensional vector space over R and Rl×q stands for the set of all l× q-matrices with entries in R.
For A = (aij) ∈ Rl×q and B = (bij) ∈ Rl×q, A ≥ B means that aij ≥ bij for i = 1, . . . , l, j = 1, . . . , q. In
particular, if aij > bij for i = 1, . . . , l, j = 1, . . . , q, then we write A � B instead of A ≥ B. Denote by Rl×q

+ the
set of all nonnegative matrices. Similar notations are adopted for vectors.

For x ∈ Rn and P ∈ Rl×q we define |x| = (|xi|) and |P | = (|pij |). Then one has

|PQ| ≤ |P ||Q|, ∀P ∈ Rl×q, ∀Q ∈ Rq×r.

Let In be the identity matrix in Rn×n. For any matrix M ∈ Rn×n the spectral abscissa (resp. the spectral radius)
of M is defined by s(M) := max{�λ λ ∈ σ(M)} (resp. ρ(M) := max{|λ| λ ∈ σ(M)}) where σ(M) := {z ∈
C : det(zIn − M) = 0} is the spectrum of M . A matrix M ∈ Rn×n is said to be Hurwitz stable (resp. Schur
stable) if, s(M) < 0 (resp. ρ(M) < 1). A norm ‖ · ‖ on Rn is said to be monotonic if ‖x‖ ≤ ‖y‖ whenever
x, y ∈ Rn, |x| ≤ |y|. Every p-norm on Rn

‖x‖p = (|x1|p + |x2|p + . . . + |xn|p) 1
p , 1 ≤ p < ∞; ‖x‖∞ = max

i=1,2,...,n
|xi|,

is monotonic. Throughout the paper, if otherwise not stated, the norm of vectors on Rn is monotonic and the
norm of a matrix P ∈ Rl×q is understood as its operator norm associated with a given pair of monotonic vector
norms on Rl and Rq, that is

‖P‖ = max{‖Py‖ : ‖y‖ = 1}.
A matrix M ∈ Rn×n is called a Metzler matrix if all off-diagonal elements of M are nonnegative. For given

A := (aij) ∈ Rn×n, we associate the Metzler matrix M(A) := (âij) where âij = |aij | if i 
= j, for i, j ∈ n and
âii = aii, for i ∈ n. The following results are used in what follows.
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Theorem 2.1 [4].

(i) Let A ∈ Rn×n
+ . Then A is Schur stable if and only if Aq � q, for some q ∈ Rn

+, q � 0.
(ii) Let A ∈ Rn×n be a Metzler matrix. Then A is Hurwitz stable if and only if Ap � 0, for some p ∈ Rn

+, p � 0.

Lemma 2.2 [18]. Let A ∈ Rn×n be a Metzler matrix and B, C, D ∈ Rn×n
+ . Then the following statements are

equivalent

(i) ρ(D) < 1 and s(A + B(In − D)−1C) < 0;
(ii) there exist p, q ∈ Rn

+, p � 0, q � 0 such that(
A B
C D

)(
p
q

)
�
(

0
q

)
; (2.1)

(iii) s(A) < 0 and ρ(C(−A)−1B + D) < 1.

To make a representation self contained and dynamic, we present here some basic facts on vector-valued functions
of bounded variation and related topics.

A function η(·) : [α, β] → Rm×n is said to be increasing on [α, β] if

η(θ2) ≥ η(θ1) for α ≤ θ1 ≤ θ2 ≤ β.

A matrix-valued function η(·) : [α, β] → Rm×n is said to be of bounded variation if

Var[α,β]η(·) := sup
P [α,β]

∑
k

‖η(θk) − η(θk−1)‖ < +∞,

where the supremum is taken over the set of all finite partitions of the interval [α, β]. The set BV ([α, β], Rm×n)
of all matrix functions η(·) of bounded variation on [α, β] satisfying η(α) = 0 is a Banach space endowed with
the norm ‖η‖ = V ar[α,β]η(·). Since all matrix norms on Rm×n are equivalent, it follows that the matrix function
η(·) = (ηij(·)) ∈ Rm×n is of bounded variation if and only if each ηij(·) is of bounded variation.

Let
NBV ([α, β], Rm×n) := {η ∈ BV ([α, β], Rm×n); η is continuous from left on (α, β)}.

Clearly, NBV ([α, β], Rm×n) is closed in BV ([α, β], Rm×n) and thus it is a Banach space with the norm ‖η‖ =
Var[α,β]η(·).

Given η(·) ∈ NBV ([α, β], Rm×n) then for any continuous functions γ ∈ C([α, β], R) and ϕ ∈ C([α, β], Rn),
the integrals ∫ β

α

γ(θ)d[η(θ)] and
∫ β

α

d[η(θ)]ϕ(θ)

exist and are defined respectively as the limits of S1(P ) :=
∑p

k=1 γ(ζk)(η(θk) − η(θk−1)) and S2(P ) :=∑p
k=1(η(θk) − η(θk−1))ϕ(ζk) as d(P ) := maxk |θk − θk−1| → 0, where P = {θ1 = α ≤ θ2 ≤ . . . ≤ θp = β}

is any finite partition of the interval [α, β] and ζk ∈ [θk−1, θk]. It is immediate from the definition that∥∥∥∫ β

α γ(θ)d[η(θ)]
∥∥∥ ≤ maxθ∈[α,β] |γ(θ)| ‖η‖,

∥∥∥∫ β

α d[η(θ)]ϕ(θ)
∥∥∥ ≤ maxθ∈[α,β] ‖ϕ(θ)‖ ‖η‖.

(2.2)

Let Rm×n be endowed with the norm ‖ · ‖. Denote by C(J, Rm×n), the vector space of all continuous functions
on J with values in Rm×n. In particular, C([α, β], Rm×n) is a Banach space endowed with the norm ‖ϕ‖ :=
maxθ∈[α,β] ‖ ϕ(θ) ‖. In what follows, the Banach space C([−h, 0], Rn) is used frequently. For simplicity, we write
C instead of C([−h, 0], Rn). For a given r > 0, let Cr := {ϕ ∈ C : ‖ϕ‖ ≤ r} and let Br := {x ∈ Rn : ‖x‖ ≤ r}.
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3. Exponential stability of neutral functional differential equations

Consider the nonlinear functional differential equation

d
dt

D(t; xt) = f
(
t; xt

)
, t ≥ σ, (3.1)

where, for each t ∈ R, xt(·) ∈ C is defined by xt(θ) := x(t + θ), θ ∈ [−h, 0] with given h > 0 and D(·; ·), f(·; ·) :
R × C → Rn are given continuous functions.

For given ϕ ∈ C, consider for (3.1) the initial condition

xσ(θ) = ϕ(θ), θ ∈ [−h, 0]. (3.2)

Throughout, it is assumed that D(·; ·) : R × C → Rn is defined by

D(t; ϕ) := ϕ(0) −
m∑

i=1

Di(t)ϕ(−hi) −
∫ 0

−h

E(t, s)ϕ(s)ds, (t, ϕ) ∈ R × C, (3.3)

where 0 ≤ hi ≤ h, i ∈ m and Di(·) : R → Rn×n, i ∈ m, E(·, ·) : R × [−h, 0] → Rn×n, are given continuous
functions. Furthermore, suppose there exist Di ∈ Rn×n

+ , i ∈ m and a continuous function E0(·) : [−h, 0] → Rn×n
+

such that
|Di(t)| ≤ Di, ∀t ∈ R, ∀i ∈ m; |E(t, s)| ≤ E0(s), ∀t ∈ R, ∀s ∈ [−h, 0]. (3.4)

Note that (3.3), (3.4) ensure that D is atomic at zero on R×C (see [11] for the definition and detailed information).
Then (3.1) is a functional differential equation of neutral type (see [11], Def. 7.1, p. 59).

Definition 3.1. Let σ ∈ R and ϕ ∈ C be given. A continuous function x(·) : [−h + σ, γ) → Rn, is said to be a
solution of (3.1) through (σ, ϕ) if D(t; xt) is continuously differentiable on [σ, γ) and x(·) satisfies (3.1) on [σ, γ)
and fulfils the initial condition (3.2).

Under the above hypotheses on D and f , there is a solution of (3.1) through (σ, ϕ). In addition, if f is Lipschitz
continuous in the second argument on compact subsets of R × C, then there exists a unique solution of (3.1)
through (σ, ϕ), ([11], Thm. 8.3, p. 65).

In what follows, assume that

f(t; ϕ) := g(t; ϕ(0), ϕ), (t, ϕ) ∈ R × C, (3.5)

where g : R × Rn × C → Rn, is continuous in all its arguments and is Lipschitz continuous in the last two
arguments on compact subsets of R × Rn × C. Then (3.1) reduces to

d
dt

D(t; xt) = g
(
t; x(t), xt

)
, t ≥ σ, (3.6)

and there always exists a unique solution of (3.6) through (σ, ϕ). This solution is denoted by x(·; σ, ϕ). Further-
more, if [σ − h, γ) is the maximum interval of existence of x(·; σ, ϕ) then x(·; σ, ϕ) is said to be noncontinuable.
The existence of a noncontinuable solution follows from Zorn’s lemma and the maximum interval of existence
must be open. In what follows, x(·; σ, ϕ) denotes a noncontinuable solution.

Suppose g(t; 0, 0) = 0, t ∈ R and then x = 0 is a solution of (3.6).

Definition 3.2. The zero solution of (3.6) is said to be exponentially stable (shortly, ES) if there exist positive
numbers r, K, β such that for each σ ∈ R and each ϕ ∈ Cr, the solution x(·; σ, ϕ) of (3.6) through (σ, ϕ) exists
on [σ − h, +∞) and furthermore satisfies

‖x(t; σ, ϕ)‖ ≤ Ke−β(t−σ), ∀t ≥ σ.
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To analyse the exponential stability of the nonlinear neutral functional differential equation (3.6), it is assumed
that:

(H1) g(t; ·, ϕ) is continuously differentiable on the ball Bδ for any t ∈ R and any ϕ ∈ Cδ, for some δ > 0 and
there exist continuous functions aij(·) : R → R, i, j ∈ n and bi(·) : R → R, i ∈ n such that

bi(t) ≤ ∂gi

∂xi
(t; x, ϕ) ≤ aii(t) < 0;

∣∣∣∣ ∂gi

∂xj
(t; x, ϕ)

∣∣∣∣ ≤ aij(t), i 
= j, i, j ∈ n, (3.7)

for any t ∈ R, any x ∈ Bδ and any ϕ ∈ Cδ and (H2) there is a continuous functional

L(t; ϕ) : R × C → Rn; (t, ϕ) → L(t, ϕ) :=
∫ 0

−h

d[η(t, θ)]ϕ(θ), (3.8)

where η(t; ·) ∈ NBV ([−h, 0], Rn×n) for each t ∈ R such that

|g(t; 0, ϕ)| ≤ |L(t; ϕ)|, ∀t ∈ R, ∀ϕ ∈ Cδ. (3.9)

Let us define
A0(t) := (aij(t)) ∈ Rn×n, t ∈ R; A1(t) := (a(1)

ij (t)) ∈ Rn×n
+ , t ∈ R, (3.10)

with
a
(1)
ij (t) := aij(t), t ∈ R, i 
= j, i, j ∈ n,

and
a
(1)
ii (t) := |bi(t)|, t ∈ R, i ∈ n.

Set
V (t) :=

(
Var[−h,0]ηij(t; ·)

) ∈ Rn×n, t ∈ R, (3.11)

and

V0(t) :=
m∑

i=1

A1(t)|Di(t)| +
∫ 0

−h

A1(t)|E(t, s)|ds + V (t), t ∈ R. (3.12)

We are now in the position to state the main result of this paper.

Theorem 3.3. Suppose (H1)–(H2) hold. If there exist β > 0 and p, q ∈ Rn
+, p, q � 0 such that(

A0(t)
)
p + V0(t)eβhq � −βp, ∀t ∈ R, (3.13)

p +

(
m∑

i=1

|Di(t)| +
∫ 0

−h

|E(t, s)|ds

)
eβhq � q, ∀t ∈ R, (3.14)

then the zero solution of (3.6) is ES.

Remark 3.4. (i) Roughly speaking, (H1) means that the “linearized part” of (3.6) is bounded above by
A0(t), t ∈ R and (H2) says that the “nonlinear part” of (3.6) is bounded above by L(t; ϕ). Thus, (3.6) is
“bounded above” (in some sense) by the linear neutral differential system

d
dt

D(t; xt) = A0(t)x(t) +
∫ 0

−h

d[η(t, θ)]x(t + θ), (3.15)

in a neighbourhood of 0. These are characterizations of a system which satisfies Theorem 3.3. Then (3.13),
(3.14) ensures that (3.15) is exponentially stable. This implies that (3.6) is ES as well.
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Theorem 3.3 now can be interpreted as follows:
“Suppose (3.6) is “bounded above” by the linear system (3.15) and (3.15) is exponentially stable. Then the

zero solution of (3.6) is exponentially stable”.
This is a nice surprise because it is similar to the well-known Weierstrass M-test in the theory of infinite

series of functions, see e.g. [20].
(ii) The proof of Theorem 3.3 given below also shows that the solutions of (3.6) exponentially decay with the

rate β. That is,
‖x(t; σ, ϕ)‖ ≤ Ke−β(t−σ), ∀t ≥ σ, ∀ϕ ∈ Cδ,

for some K ≥ 1. Here β > 0 satisfies (3.13)−(3.14).

Corollary 3.5. Suppose that

bi ≤ ∂gi

∂xi
(t; x, ϕ) ≤ aii < 0;

∣∣∣∣ ∂gi

∂xj
(t; x, ϕ)

∣∣∣∣ ≤ aij , i 
= j, i, j ∈ n, (3.16)

for any t ∈ R, any x ∈ Bδ and any ϕ ∈ Cδ (for some δ > 0) and

|g(t; 0, ϕ)| ≤ |L0(ϕ)|, ∀t ∈ R, ∀ϕ ∈ Cδ. (3.17)

where L0(ϕ) : C → Rn; ϕ → L0ϕ :=
∫ 0

−h d[η0(θ)]ϕ(θ) with η0(·) ∈ NBV ([−h, 0], Rn×n). Let

A0 := (aij) ∈ Rn×n; A1 := (a(1)
ij ) ∈ Rn×n

+ , (3.18)

with a
(1)
ij := aij , i 
= j, i, j ∈ n and a

(1)
ii := |bi|, i ∈ n and let

V0 :=
m∑

i=1

A1Di +
∫ 0

−h

A1E0(s)ds + (Var[−h,0]η0ij), (3.19)

where Di, i ∈ n and E0(·) satisfy (3.4) and η0(·) := (η0ij (·)). Then the zero solution of (3.6) is ES if one of the
following conditions holds:

(i) there exist β > 0 and p, q ∈ Rn
+, p � 0, q � 0 such that

A0p + V0eβhq � −βp; p + (
m∑

i=1

Di +
∫ 0

−h

E0(s)ds)eβhq � q; (3.20)

(ii) ρ(
∑m

i=1 Di +
∫ 0

−h E0(s)ds) < 1 and s(A0 + V0(In −∑m
i=1 Di −

∫ 0

−h E0(s)ds)−1) < 0;

(iii) s(A0) < 0 and ρ((−A0)−1V0 +
∑m

i=1 Di +
∫ 0

−h
E0(s)ds) < 1;

(iv) there exist p, q ∈ Rn
+, p � 0, q � 0 such that(

A0 V0

In

∑m
i=1 Di +

∫ 0

−h
E0(s)ds

)(
p
q

)
�
(

0
q

)
. (3.21)

Proof. Note that (ii), (iii) and (iv) are equivalent, by Lemma 2.2. By continuity, (iv) implies that (i) holds for
sufficiently small β > 0.

On the other hand, (3.6) is ES provided (i) holds, by Theorem 3.3. Thus, the conclusion of Corollary 3.5
follows from Theorem 3.3. This completes the proof. �

Remark 3.6. Note that if (3.20) holds for h > 0 then by continuity, it still holds for any h∗ ∈ [h, h̄] for some h, h̄
with 0 < h < h < h̄. Thus, the zero solution of (3.6) is ES for any h ∈ [h, h̄]. This gives a delay-dependent
stability condition of (3.6).
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Consider the linear neutral differential system

d
dt

D(t; xt) = A(t)x(t) +
r∑

k=1

Bk(t)x(t − τk) +
∫ 0

−h

C(t, s)x(t + s)ds, t ≥ σ, (3.22)

where D(·; ·) satisfies (3.3) and (3.4) and A(·) : R → Rn×n, Bk(·) : R → Rn×n, k ∈ r and C(·, ·) : R × [−h, 0] →
Rn×n, are given continuous functions and 0 ≤ τk ≤ h, k ∈ r.

Let

V1(t) :=
m∑

i=1

|A(t)||Di(t)| +
∫ 0

−h

|A(t)||E(t, s)|ds +
r∑

k=1

|Bk(t)| +
∫ 0

−h

|C(t, s)|ds, t ∈ R. (3.23)

The following is immediate from Theorem 3.3.

Corollary 3.7. Suppose there exist β > 0 and p, q ∈ Rn
+, p, q � 0 such that(

M(A(t))
)
p + V1(t)eβhq � −βp, ∀t ∈ R, (3.24)

and (3.14) holds. Then (3.22) is exponentially stable.

Proof of Theorem 3.3. Let x(t) := x(t; σ, ϕ), t ∈ [σ − h, γ) be the unique solution of (3.1) through (σ, ϕ) and
let y(t) := x(t) −∑m

i=1 Di(t)x(t − hi)−
∫ 0

−h
E(t, s)x(t + s)ds, t ∈ [σ, γ). Then x(·) and y(·) satisfy the following

system
dy

dt
= g(t, x(t), xt), t ∈ [σ, γ), (3.25)

and

x(t) = y(t) +
m∑

i=1

Di(t)x(t − hi) +
∫ 0

−h

E(t, s)x(t + s)ds, t ∈ [σ, γ). (3.26)

We divide the proof into three steps.
Step I. We show that there exists r > 0 such that for any σ ∈ R and any ϕ ∈ Cr, the solution x(t) :=
x(t; σ, ϕ), t ∈ [σ − h, γ) satisfies

‖x(t)‖ ≤ δ

2
, t ∈ [σ, γ), (3.27)

where δ > 0 is the positive number so that (3.7) and (3.9) hold.
Without loss of generality, assume that Rn is endowed with the maximum norm ‖ · ‖∞. Note that (3.13)

and (3.14) also hold for any vectors kp, kq ∈ Rn, k > 0. Therefore, we can assume further that

max{‖p‖, ‖q‖} ≤ δ

2
. (3.28)

Let p := (p1, p2, . . . , pn)T ; q := (q1, q2, . . . , qn)T , pi, qi > 0, ∀i ∈ n. Choose r > 0 so that 0 < r <
min{mini∈n pi, mini∈n qi} and

|ϕ(0)| +
m∑

i=1

Di|ϕ(−hi)| +
∫ 0

−h

E0(s)|ϕ(s)|ds � p, ∀ϕ ∈ Cr, (3.29)

where Di ∈ Rn×n, i ∈ m and E0(·) satisfy (3.4).
Note that |ϕ(t)| � q, for any t ∈ [−h, 0] and for any ϕ ∈ Cr. From x(σ + s) = ϕ(s), s ∈ [−h, 0], it follows that

|x(σ)| = |ϕ(0)| � q. Furthermore, (3.4) and (3.29) imply

|y(σ)| ≤ |x(σ)| +
m∑

i=1

|Di(σ)||x(σ − hi)| +
∫ 0

−h

|E(σ, s)||x(σ + s)|ds

≤ |ϕ(0)| +
m∑

i=1

Di|ϕ(−hi)| +
∫ 0

−h

E0(s)|ϕ(s)|ds � p.
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We claim that
|x(t)| ≤ q, t ∈ [σ, γ); |y(t)| ≤ p, t ∈ [σ, γ).

Assume on the contrary that there exists t0 ∈ (σ, γ) such that either |x(t0)| � q or |y(t0)| � p. Set t1 := inf{t ∈
[σ, γ) : (|x(t)|, |y(t)|) � (q, p)}. By continuity, t1 > σ and one of the following statements holds:

(C1) |x(t)| ≤ q, t ∈ [σ, t1] and there is i0 ∈ n such that

|y(t)| ≤ p, ∀t ∈ [σ, t1); |yi0(t1)| = pi0 , |yi0(τk)| > pi0 , (3.30)

for some τk ∈ (t1, t1 + 1
k ), k ∈ N.

(C2) |y(t)| ≤ p, t ∈ [σ, t1] and there is k0 ∈ n such that

|x(t)| ≤ q, ∀t ∈ [σ, t1); |xk0 (t1)| = qk0 , |xk0(ξk)| > qk0 , (3.31)

for some ξk ∈ (t1, t1 + 1
k ), k ∈ N.

Assume that (C1) holds. By the monotonicity of vector norms,

‖x(t)‖ = ‖|x(t)|‖ ≤ ‖q‖ ≤ δ

2
, t ∈ [σ, t1].

By continuity, ‖x(t)‖ < δ, t ∈ [σ, t1 + ε0), for some ε0 > 0. This implies ‖xt‖ < δ, t ∈ [σ, t1 + ε0). Set

z(t) :=
m∑

i=1

Di(t)x(t − hi) +
∫ 0

−h

E(t, s)x(t + s)ds, t ∈ [σ, γ). (3.32)

From (3.26), it follows that
x(t) = y(t) + z(t), t ∈ [σ, γ). (3.33)

Since (3.25), (3.33) and the mean value Theorem [7], it follows that

d
dt

|yi(t)| =sgn(yi(t))
dyi

dt
= sgn(yi(t))gi(t, x(t), xt)

= sgn(yi(t))
[(

gi(t, x(t), xt) − gi(t, 0, xt)
)

+ gi(t, 0, xt)
]

=sgn(yi(t))
n∑

j=1

⎛
⎝ 1∫

0

∂gi

∂xj

(
t, ξx(t), xt

)
dξ

⎞
⎠ xj(t) + sgn(yi(t))gi(t, 0, xt)

= sgn(yi(t))
n∑

j=1

⎛
⎝ 1∫

0

∂gi

∂xj

(
t, ξx(t), xt

)
dξ

⎞
⎠ (yj(t) + zj(t)) + sgn(yi(t))gi(t, 0, xt)

=

⎛
⎝ 1∫

0

∂gi

∂xi

(
t, ξx(t), xt

)
dξ

⎞
⎠ |yi(t)| + sgn(yi(t))

n∑
j=1,j �=i

⎛
⎝ 1∫

0

∂gi

∂xj

(
t, ξx(t), xt

)
dξ

⎞
⎠ yj(t)

+ sgn(yi(t))
n∑

j=1

⎛
⎝ 1∫

0

∂gi

∂xj

(
t, ξx(t), xt

)
dξ

⎞
⎠ zj(t) + sgn(yi(t))gi(t, 0, xt),
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for almost any t ∈ [σ, t1 + ε0) and any i ∈ n. Invoking (3.7), we get the following estimates

d
dt
|yi(t)| ≤

n∑
j=1

aij(t)|yj(t)| +
n∑

j=1

∣∣∣∣∣∣
⎛
⎝ 1∫

0

∂gi

∂xj

(
t, ξx(t), xt

)
dξ

⎞
⎠
∣∣∣∣∣∣ |zj(t)| + |gi(t, 0, xt)|

≤
n∑

j=1

aij(t)|yj(t)| +
n∑

j=1

a
(1)
ij (t)|zj(t)| + |gi(t, 0, xt)|,

for almost any t ∈ [σ, t1 + ε0) and any i ∈ n. It follows that for any t ∈ [σ, t1 + ε0) and for any i ∈ n

D+|yi(t)| := lim sup
h→0+

|yi(t + h)| − |yi(t)|
h

= lim sup
h→0+

1
h

t+h∫
t

d
dζ

|yi(ζ)|dζ

≤
n∑

j=1

aij(t)|yj(t)| +
n∑

j=1

a
(1)
ij (t)|zj(t)| + |gi(t, 0, xt)|, (3.34)

where D+ denotes the Dini upper-right derivative. Note that (3.32) yields

|z(t1)| ≤
m∑

i=1

|Di(t1)||x(t1 − hi)| +
∫ 0

−h

|E(t1, s)||x(t1 + s)|ds ≤
m∑

i=1

|Di(t1)|q +
∫ 0

−h

|E(t1, s)|qds,

and thus,

A1(t1)|z(t1)| ≤
(

m∑
i=1

A1(t1)|Di(t1)| +
∫ 0

−h

A1(t1)|E(t1, s)|ds

)
q.

Furthermore, (3.9) and (2.2) imply

|g(t1, 0, xt1)| ≤
∣∣∣∣
∫ 0

−h

d[η(t1, θ)]x(t1 + θ)
∣∣∣∣ ≤ (Var[−h,0]ηij(t1, ·))q = V (t1)q.

Therefore,

A1(t1)|z(t1)| + |g(t1, 0, xt1)| ≤
(

m∑
i=1

A1(t1)|Di(t1)| +
∫ 0

−h

A1(t1)|E(t1, s)|ds + V (t1)

)
q = V0(t1)q, (3.35)

where V0(t) := (v(0)
ij (t)) is defined by (3.12). Let i0 be the index so that (3.30) holds. It follows from (3.34),

(3.35) and (3.13) that

D+|yi0(t1)| ≤
n∑

j=1

ai0j(t1)|yj(t1)| +
n∑

j=1

a
(1)
i0j(t1)|zj(t1)| + |gi0(t1, 0, xt1)|

(3.34)−(3.35)

≤
n∑

j=1

ai0j(t1)pj +
n∑

j=1

v
(0)
i0j(t1)qj

(3.13)
< 0.

On the other hand, (3.30) implies that

D+|yi0(t1)| = lim sup
t→t+1

|yi0(t)| − |yi0(t1)|
t − t1

≥ limk→∞
|yi0(τk)| − |yi0(t1)|

τk − t1
≥ 0.

This is a contradition.
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Assume that (C2) holds. It follows from (3.14) and (3.26) that

|x(t1)| (3.26)
=

∣∣y(t1) +
m∑

i=1

Di(t)x(t1 − hi) +
∫ 0

−h

E(t1, s)x(t1 + s)ds
∣∣

≤ |y(t1)| +
m∑

i=1

|Di(t1)||x(t1 − hi)| +
∫ 0

−h

|E(t1, s)||x(t1 + s)|ds

≤ p +

(
m∑

i=1

|Di(t1)| +
∫ 0

−h

|E(t1, s)|ds

)
q

(3.14)� q.

This conflicts with the last inequality in (3.31). Thus,

|x(t)| ≤ q, t ∈ [σ, γ); |y(t)| ≤ p, t ∈ [σ, γ).

By the monotonicity of vector norms,

‖x(t)‖ ≤ ‖q‖ ≤ δ

2
, ∀t ∈ [σ, γ).

Step II. We show that
‖x(t; σ, ϕ)‖ ≤ Ke−β(t−σ), ∀t ∈ [σ, γ), ∀ϕ ∈ Cr, (3.36)

where β > 0 satisfies (3.13), (3.14) and r is determined in Step I and K depends on β, r.

Taking into account p, q � 0, we are able to choose a positive number K such that

|ϕ(t)| � Kq, t ∈ [−h, 0], ϕ ∈ Cr, (3.37)

and

|ϕ(0)| +
m∑

i=1

Di|ϕ(−hi)| +
∫ 0

−h

E0(s)|ϕ(s)|ds � Kp, ∀ϕ ∈ Cr. (3.38)

By Step I, ‖x(t)‖ ≤ δ
2 , t ∈ [σ, γ), where x(t) := x(t; σ, ϕ), ϕ ∈ Cr. This implies ‖xt‖ ≤ δ

2 , for any t ∈ [σ, γ). It
follows from (3.7) and (3.9) that

bi(t) ≤ ∂gi

∂xi
(t; x(t), xt) ≤ aii(t) < 0, t ∈ [σ, γ), i ∈ n,

∣∣∣∣ ∂gi

∂xj
(t; x(t), xt)

∣∣∣∣ ≤ aij(t), t ∈ [σ, γ); i 
= j, i, j ∈ n,

and
|g(t; 0, xt)| ≤ |L(t; xt)|, t ∈ [σ, γ).

Define u(t) := Ke−β(t−σ)q, t ∈ [σ − h,∞) and v(t) := Ke−β(t−σ)p, t ∈ [σ,∞). Then (3.37), (3.38) yields
|x(t)| � u(t), t ∈ [σ − h, σ] and |y(σ)| � v(σ). We claim that

|x(t)| ≤ u(t), t ∈ [σ, γ); |y(t)| ≤ v(t), t ∈ [σ, γ).
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The proof is similar to that of Step I. Assume on the contrary that there exists tθ ∈ (σ, γ) such that either
|x(tθ)| � u(tθ) or |y(tθ)| � v(tθ). Set tc := inf{t ∈ [σ, γ) : (|x(t)|, |y(t)|) � (u(t), v(t))}. By continuity, t1 > σ
and one of the following statements holds:

(C3) |x(t)| ≤ u(t), t ∈ [σ, tc] and there is i0 ∈ n such that

|y(t)| ≤ v(t), ∀t ∈ [σ, tc); |yi0(tc)| = vi0 (tc), |yi0(τk)| > vi0(τk), (3.39)

for some τk ∈ (tc, tc + 1
k ), k ∈ N.

(C4) |y(t)| ≤ v(t), t ∈ [σ, tc] and there is k0 ∈ n such that

|x(t)| ≤ u(t), ∀t ∈ [σ, tc); |xk0 (tc)| = uk0(tc), |xk0(ξk)| > uk0(ξk), (3.40)

for some ξk ∈ (tc, tc + 1
k ), k ∈ N.

If (C3) holds then

|z(tc)| ≤
m∑

i=1

|Di(tc)||x(tc − hi)| +
∫ 0

−h

|E(tc, s)||x(tc + s)|ds

≤
m∑

i=1

|Di(tc)|u(tc − hi) +
∫ 0

−h

|E(tc, s)|u(tc + s)ds

≤ Ke−β(tc−σ)eβh

(
m∑

i=1

|Di(tc)| +
∫ 0

−h

|E(tc, s)|ds

)
q

and thus,

A1(tc)|z(tc)| ≤ Ke−β(tc−σ)eβh

(
m∑

i=1

A1(tc)|Di(tc)| +
∫ 0

−h

A1(tc)|E(tc, s)|ds

)
q.

On the other hand, it follows from (3.9) and (2.2) that

|g(tc, 0, xtc)| ≤
∣∣ ∫ 0

−h

d[η(tc, θ)]x(tc + θ)
∣∣ ≤ Ke−β(tc−σ)eβh(Var[−h,0]ηij(tc, ·))q

= Ke−β(tc−σ)eβhV (tc)q.

Therefore,

A1(tc)|z(tc)| + |g(tc, 0, xtc)| ≤ Ke−β(tc−σ)eβh

(
m∑

i=1

A1(tc)|Di(tc)| +
∫ 0

−h

A1(tc)|E(tc, s)|ds + V (tc)

)
q

= Ke−β(tc−σ)eβhV0(tc)q.



100 PHAM HUU ANH NGOC ET AL.

Thus,

D+|yi0(tc)| ≤
n∑

j=1

ai0j(tc)|yj(tc)| +
n∑

j=1

a
(1)
i0j(tc)|zj(tc)| + |gi0(tc, 0, xtc)|

≤
n∑

j=1

ai0j(tc)vj(tc) +
n∑

j=1

a
(1)
i0j(tc)|zj(tc)| + |gi0(tc, 0, xtc)|

≤
n∑

j=1

ai0j(tc)Ke−β(tc−σ)pj + Ke−β(tc−σ)eβh
n∑

j=1

v
(0)
i0j(tc)qj

= Ke−β(tc−σ)

⎛
⎝ n∑

j=1

ai0j(tc)pj + eβh
n∑

j=1

v
(0)
i0j(tc)qj

⎞
⎠

(3.13)
< Ke−β(tc−σ)(−βpi0) = D+vi0(tc).

On the other hand, (3.39) implies that

D+|yi0(tc)| = lim sup
t→t+c

|yi0(t)| − |yi0(tc)|
t − tc

≥ limk→∞
|yi0(τk)| − |yi0(tc)|

τk − tc

≥ limk→∞
vi0(τk) − vi0(tc)

τk − tc
= lim

k→∞
vi0 (τk) − vi0(tc)

τk − tc
=

dvi0

dt
(tc) = D+vi0(tc).

This is a contradition.
The remainder of this step is similar to that of Step I and so it is omitted here.

Step III. Let x(t; σ, ϕ), t ∈ [σ, γ), be the unique noncontinuable solution of (3.6) though (σ, ϕ) with ϕ ∈ Cr.
We claim that γ = ∞ and so the zero solution of (3.6) is ES.

By the mean value theorem, we have for each i ∈ n,

|gi(t, ϕ(0), ϕ)| ≤ |gi(t, ϕ(0), ϕ) − gi(t, 0, ϕ)| + |gi(t, 0, ϕ)| ≤
n∑

j=1

⎛
⎝ 1∫

0

∣∣∣∣ ∂gi

∂xj

(
t, ξϕ(0), ϕ

)∣∣∣∣dξ

⎞
⎠ |ϕj(0)| + |gi(t, 0, ϕ)|.

From (3.7), (3.9), it follows that

|gi(t, ϕ(0), ϕ)| ≤
n∑

j=1

a
(1)
ij (t)|ϕj(0)| + |Li(t, ϕ)|,

for each i ∈ n. Thus, gi(t, ϕ(0), ϕ) is bounded on W ⊂ R × C if W is a closed bounded set in R × C. On the
other hand, (3.36) implies that x(·; σ, ϕ) is bounded on [σ, γ). Thus γ must be equal to ∞, by ([11], Thm. 8.5,
p. 65). This completes the proof.

4. Discussion and illustrative examples

We first present an analogue of Theorem 3.3. Consider the nonlinear differential equation of neutral type

d
dt

D(t; xt) = f(t, x(t)) + g
(
t; xt

)
, (4.1)
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where:

– D(·; ·) is defined by (3.3), (3.4);

– f(·; ·) : R×Rn → Rn is continuous and is (locally) Lipschitz continuous with respect to the second argument
on each compact subset of R × Rn and f(t; 0) = 0, t ∈ R;

– g(·; ·) : R × C → Rn is continuous and is Lipschitz continuous in the second argument on compact subsets of
R × C and g(t; 0) = 0, t ∈ R.

Furthermore, we assume that
(H3) f(t; ·) is continuously differentiable on Bδ for any t ∈ R, for some δ > 0 and

bi(t) ≤ ∂fi

∂xi
(t; x) ≤ aii(t) < 0;

∣∣∣∣ ∂fi

∂xj
(t; x)

∣∣∣∣ ≤ aij(t), i 
= j, i, j ∈ n, (4.2)

for any t ∈ R, any x ∈ Bδ and

(H4)
|g(t; ϕ)| ≤ |L(t; ϕ)|, ∀t ∈ R, ∀ϕ ∈ Cδ, (4.3)

where aij(·), i, j ∈ n and bi(·) and L(·; ·) are as in (H1)−(H2).

Using the same method of proof as for Theorem 3.3, we can prove the following theorem.

Theorem 4.1. Suppose (H3)−(H4) hold. If (3.13), (3.14) hold then the zero solution of (4.1) is ES.

Proof. The proof of Theorem 4.1 is almost the same of that of Theorem 3.3. Thus it is omitted here. �

Furthermore, a similar result to Corollary 3.5 for (4.1) can be stated and proven easily.
We now make a brief comparison between existing results and the stability criteria of this paper. Consider

the linear neutral time-invariant differential equation

d
dt

(x(t) − cx(t − h)) = ax(t) + bx(t − h), (4.4)

where a, b, c, h are given real numbers and h > 0.

By Corollary 3.5 (ii) (see also [14]), (4.4) is ES if

|c| < 1 and a +
|a||c| + |b|

1 − |c| < 0. (4.5)

Consider the perturbed equation

d
dt

(x(t) − cx(t − h)) = ax(t) + bx(t − h) + q(x(t), x(t − h)), (4.6)

where q(·, ·) : R × R → R is a Lipschitz continuous function such that

lim
|u|+|v|→0

|q(u, v)|
|u| + |v| = 0. (4.7)

We show that the zero solution of (4.6) is ES provided (4.5) and (4.7) hold. This result can be seen as an
“extension” of the famous Poincaré–Lyapunov theorem (see e.g. [3], Thm. 11.2, p. 336) to time-delay differential
equations of neutral type.
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Clearly, (4.6) is of the form (4.1) where

f(t; u) := au, t, u ∈ R; g(t; ϕ) := bϕ(−h) + q(ϕ(0), ϕ(−h)), t ∈ R, ϕ ∈ C.

It follows from (4.5) that

|c| < 1 and a +
|a||c| + |b| + 2ε

1 − |c| < 0, (4.8)

for ε > 0 sufficiently small. On the other hand, (4.7) implies that there exists δ > 0 such that

|q(u, v)| ≤ ε|u| + ε|v|, ∀u, v ∈ R, |u| ≤ δ, |v| ≤ δ.

It follows that
|g(t; ϕ)| ≤ L(ϕ) := ε|ϕ(0)| + (|b| + ε)|ϕ(−h)|, ∀t ∈ R, ϕ ∈ Cδ. (4.9)

Then (4.8), (4.9) ensures that the zero solution of (4.6) is ES, by Theorem 4.1.

Next, we consider a shunted power transmission line described by the equation

ẋ(t) = −h(x(t)) + cẋ(t − τ), (4.10)

where c ∈ R, τ > 0 and h(·) : R → R, h(0) = 0, is a continuous function, see e.g. [11].
Using a Lyapunov function, it has been shown in ([11], Thm. 8.5, p. 296) that the zero solution of (4.10) is

uniformly asymptotically stable if |c| < 1
2 and

xh(x) > 0, ∀x 
= 0; lim
|x|→∞

|h(x)| = ∞. (4.11)

Assume that h(·) is Lipschitz continuous with the Lipschitz constant b:

|h(x) − h(y)| ≤ b|x − y|, ∀x, y ∈ R,

which ensures that (4.10) has a unique solution for each initial value function ϕ ∈ C1([−h, 0], R). Furthermore,
we now consider for (4.10), a slightly stronger condition than (4.11):

h′(x) ≥ a > 0, ∀x ∈ R. (4.12)

Clearly, (4.10) can be represented in the form

d
dt

(x(t) − cx(t − τ)) = −h(x(t)).

By Corollary 3.5 (ii), (4.10) is ES if

−a +
b|c|

1 − |c| < 0, or equivalently |c| <
a

a + b
· (4.13)

Note that (4.12) is slightly stronger than (4.11), but our result (the zero solution of (4.10) is ES) is stronger
than ([11], Thm. 8.5, p. 296) (the zero solution of (4.10) is uniformly asymptotically stable).

On the other hand, by Corollary 3.5 (i), (4.10) is ES provided there exist positive numbers p, q, β so that

−ap + b|c|qeβτ < −βp; p + |c|eβτq < q. (4.14)

It is important to note that (4.14) implies that solutions of (4.10) exponentially decay with the rate β > 0.
That is,

‖x(t; ϕ)‖ ≤ Ke−βt‖ϕ‖, ∀t ≥ 0.

Furthermore, if (4.14) holds for τ > 0 then by continuity, it still holds for any τ∗ ∈ [τ, τ̄ ] for some τ, τ̄ with
0 < τ < τ < τ̄ . Thus, the zero solution of (4.10) is ES for any τ ∈ [τ , τ̄ ]. This gives a delay-dependent stability
condition of (4.10).

Finally, we illustrate the main results by a couple of examples.
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Example 4.2. Consider the nonlinear time-varying neutral delay differential equation

d
dt

(
x(t) − 1

9
x(t − h)

)
= −(2 + cos t) sin x(t) + a sin t sin

(
x(t − h)

)
, (4.15)

where h > 0 is a constant delay and a ∈ R is a parameter. Obviously, (4.15) can be represented in the form

d
dt

(x(t) − 1
9
x(t − h)) = g(t; x(t), xt),

where g(t; x, ϕ) := −(2 + cos t) sin x + a sin t sin
(
ϕ(−h)

)
, t, x ∈ R, ϕ ∈ C([−h, 0], R). Clearly,

−3 ≤ ∂g

∂x
(t; x, ϕ) = −(2 + cos t) cosx ≤ − cos

(π

n

)
< 0, x ∈

[
−π

n
,
π

n

]
, n ∈ N, n ≥ 3,

for any t ∈ R and any ϕ ∈ C([−h, 0], R). Furthermore, we have

|g(t; 0, ϕ)| = |a|| sin t|| sin (ϕ(−h)
)| ≤ |a||ϕ(−h)|.

Thus, by Corollary 3.5 (i), (4.15) is ES if for some n ∈ N, n ≥ 3, there are positive numbers p, q, β so that

− cos
(π

n

)
p +

(
|a| + 1

3

)
eβhq < −βp; p +

1
9
eβhq < q.

Once again, this gives a dependent-delay stability condition for (4.15).

Theorems 3.3 and 4.1 can be applied to study behavior of solutions of neutral delay logistic equations [23]
and the exponential stability of equilibria of various classes of neural networks of neutral type [5]. We present
here an application to neural networks.

Example 4.3. Consider a neural network described by the following nonlinear neutral delay differential
equation

u̇i(t) = −aiui(t) +
n∑

j=1

wijgj(uj(t − h)) +
n∑

j=1

dij u̇j(t − h) + Ii, i ∈ n (4.16)

ui(t) = ϕi(t) ∈ C1([−h, 0], R), t ∈ [−h, 0], i ∈ n, (4.17)

where ui(t) denotes the state of the ith neuron at time t; the scalar ai > 0 is the rate with which the ith unit
will reset its potential to the resting state in isolation when disconnected from the network and external inputs
at time t, wij , dij , i, j ∈ n, are known scalars; the scalar h > 0 represents the transmission delay; gj and Ii are
the activation function of the neurons and external constant inputs, respectively.

Assume that the activation function gi is bounded, which satisfies

0 ≤ gi(ξ1) − gi(ξ2)
ξ1 − ξ2

≤ σi, ∀ξ1, ξ2 ∈ R, ξ1 
= ξ2, (4.18)

for some σi > 0 and each i ∈ n. Now, let u∗ = (u∗
1, u

∗
2, . . . , u

∗
n)T be the equilibrium point of (4.16) and let x(t) =

u(t) − u∗. Define A := −diag(a1, a2, . . . , an), W := (wij), D := (dij) ∈ Rn×n. Under this transformation, (4.16)
becomes

d
dt

(
x(t) − Dx(t − h)

)
= Ax(t) + Wf(x(t − h)), (4.19)

where x(t) = (x1(t), x2(t), . . . , xn(t))T is the state vector of the transformed system, and f(x(t)) =
(f1(x1(t)), f2(x2(t)), ..., fn(xn(t)))T with fi(xi(t)) = gi(xi(t) + u∗

i ) − gi(u∗
i ), i ∈ n. Then, it is easy to see

that fi(0) = 0, i ∈ n and

0 ≤ fi(ξ1) − fi(ξ2)
ξ1 − ξ2

≤ σi, ∀ξ1, ξ2 ∈ R, ξ1 
= ξ2, (4.20)

for i ∈ n. In particular, (4.20) yields |fi(ξ)| ≤ σi|ξ|, ∀ξ ∈ R, for i ∈ n.
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Applying Corollary 3.5 (ii) to (4.19), we conclude that (4.19) is ES, or equivalently, the equilibrium point
u∗ = (u∗

1, u
∗
2, . . . , u

∗
n)T of (4.16) is exponentially stable if ρ(|D|) < 1 and the matrix

−diag(a1, a2, . . . , an) + (diag(a1, a2, . . . , an)|D| + |W |diag(σ1, σ2, . . . , σn)) (In − |D|)−1,

is Hurwitz stable.
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