Stability of observations of partial differential equations under uncertain perturbations
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 1, pp. 45-61.

We demonstrate the stability of observability estimates for solutions to wave and Schrödinger equations subjected to additive perturbations. This work generalises recent averaged observability/control results by allowing for systems consisting of operators of different types. We also consider the simultaneous observability problem by which one tries to estimate the energy of each component of a system under consideration. Our analysis relies on microlocal defect tools, in particular on standard H-measures when the main system dynamic is governed by the wave operator, and parabolic H-measures in the case of the Schrödinger operator.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2016074
Classification : 93B05, 93B07, 93C20, 93D09
Mots clés : Averaged control, robust observability, parabolic H-measures
Lazar, Martin 1

1 University of Dubrovnik, Department of Electrical Engineering and Computing, Ćira Carića 4, 20 000 Dubrovnik, Croatia.
@article{COCV_2018__24_1_45_0,
     author = {Lazar, Martin},
     title = {Stability of observations of partial differential equations under uncertain perturbations},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {45--61},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {1},
     year = {2018},
     doi = {10.1051/cocv/2016074},
     mrnumber = {3764133},
     zbl = {1396.93030},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2016074/}
}
TY  - JOUR
AU  - Lazar, Martin
TI  - Stability of observations of partial differential equations under uncertain perturbations
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 45
EP  - 61
VL  - 24
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2016074/
DO  - 10.1051/cocv/2016074
LA  - en
ID  - COCV_2018__24_1_45_0
ER  - 
%0 Journal Article
%A Lazar, Martin
%T Stability of observations of partial differential equations under uncertain perturbations
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 45-61
%V 24
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2016074/
%R 10.1051/cocv/2016074
%G en
%F COCV_2018__24_1_45_0
Lazar, Martin. Stability of observations of partial differential equations under uncertain perturbations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 1, pp. 45-61. doi : 10.1051/cocv/2016074. http://www.numdam.org/articles/10.1051/cocv/2016074/

F. Alabau-Boussouira, A hierarchic multi-level energy method for the control of bi-diagonal and mixed n-coupled cascade systems of PDEs by a reduced number of controls. Adv. Differ. Equ. 18 (2013) 1005–1072. | MR | Zbl

N. Antonić and M. Lazar, H-measures and variants applied to parabolic equations. J. Math. Anal. Appl. 343 (2008) 207–225. | DOI | MR | Zbl

N. Antonić and M. Lazar, Parabolic H-measures. J. Funct. Anal. 265 (2013) 1190–1239. | DOI | MR | Zbl

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30 (1992) 1024–1065. | DOI | MR | Zbl

N. Burq and P. Gérard, Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes. C. R. Acad. Sci. Paris Sér. I Math. 325 (1997) 749–752. | DOI | MR | Zbl

B. Dehman, M. Léautaud and J. Le Rousseau, Controllability of two coupled wave equations on a compact manifold. Arch. Ration. Mech. Anal. 211 (2014) 113–187. | DOI | MR | Zbl

S. Ervedoza and E. Zuazua, Sharp observability estimates for heat equations. Arch. Ration. Mech. Anal. 202 (2011) 975–1017. | DOI | MR | Zbl

P. Gérard, Microlocal Defect Measures. Comm. Partial Differ. Equ. 16 (1991) 1761–1794. | DOI | MR | Zbl

L. Hörmander, On the uniqueness of the Cauchy problem. II. Math. Scand. 7 (1959) 177–190. | DOI | MR | Zbl

L. Hörmander, Linear Partial Differential Operators, Springer (1976). | MR

L. Hörmander, The Analysis of Linear Partial Differential Operators I-IV. Springer (1990). | MR | Zbl

M. Lazar and E. Zuazua, Averaged control and observation of parameter-depending wave equations. C. R. Acad. Sci. Paris, Ser. I 352 (2014) 497–502. | DOI | MR | Zbl

J. Le Rousseau, G. Lebeau, P. Terpolilli and E. Trélat, Geometric control condition for the wave equation with a time-dependent observation demain. Preprint (2016). | arXiv | MR

T. Li, B. Rao and L. Hu, Exact boundary synchronization for a coupled system of 1-D wave equations. ESAIM: COCV 20 (2014) 339–361. | Numdam | MR | Zbl

Q. Lü and E. Zuazua, Averaged controllability for random evolution partial differential equations. J. Math. Pures Appl. 105 (2016) 367–414. | DOI | MR | Zbl

L. Tartar, H-measures, a new approach for studying homogenisation, oscillation and concentration effects in PDEs. Proc. R. Soc. Edinburgh. Sect. A 115 (1990) 193–230. | DOI | MR | Zbl

E. Zuazua, Averaged Control. Automatica 50 (2014) 3077–3087. | DOI | MR | Zbl

E. Zuazua, Robust observation of Partial Differential Equations (2014).

Cité par Sources :