Exact boundary synchronization for a coupled system of 1-D wave equations
ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 2, pp. 339-361.

Several kinds of exact synchronizations and the generalized exact synchronization are introduced for a coupled system of 1-D wave equations with various boundary conditions and we show that these synchronizations can be realized by means of some boundary controls.

DOI : 10.1051/cocv/2013066
Classification : 35B37, 93B05, 93B07
Mots clés : exact null controllability, exact synchronization, exact synchronization by groups, exact null controllability and synchronization by groups, generalized exact synchronization
@article{COCV_2014__20_2_339_0,
     author = {Li, Tatsien and Rao, Bopeng and Hu, Long},
     title = {Exact boundary synchronization for a coupled system of {1-D} wave equations},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {339--361},
     publisher = {EDP-Sciences},
     volume = {20},
     number = {2},
     year = {2014},
     doi = {10.1051/cocv/2013066},
     mrnumber = {3264207},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2013066/}
}
TY  - JOUR
AU  - Li, Tatsien
AU  - Rao, Bopeng
AU  - Hu, Long
TI  - Exact boundary synchronization for a coupled system of 1-D wave equations
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2014
SP  - 339
EP  - 361
VL  - 20
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2013066/
DO  - 10.1051/cocv/2013066
LA  - en
ID  - COCV_2014__20_2_339_0
ER  - 
%0 Journal Article
%A Li, Tatsien
%A Rao, Bopeng
%A Hu, Long
%T Exact boundary synchronization for a coupled system of 1-D wave equations
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2014
%P 339-361
%V 20
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2013066/
%R 10.1051/cocv/2013066
%G en
%F COCV_2014__20_2_339_0
Li, Tatsien; Rao, Bopeng; Hu, Long. Exact boundary synchronization for a coupled system of 1-D wave equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 2, pp. 339-361. doi : 10.1051/cocv/2013066. http://www.numdam.org/articles/10.1051/cocv/2013066/

[1] F. Alabau-Boussouira, Indirect boundary stabilization of weakly coupled hyperbolic systems. SIAM J. Control Optim. 41 (2002) 511-541. | MR | Zbl

[2] F. Alabau-Boussouira, A two-level energy method for indirect boundary observability and controllability of weakly coupled hyperbolic systems. SIAM J. Control Optim. 42 (2003) 871-906. | MR | Zbl

[3] F. Alabau-Boussouira, M. Léautaud, Indirect stabilization of locally coupled wave-type systems. ESAIM: COCV 18 (2012) 548-582. | Numdam | MR | Zbl

[4] H. Fujisaka and T. Yamada, Stability theory of synchronized motion in coupled-oscillator systems. Progress Theoret. Phys. 69 (1983) 32-47. | MR | Zbl

[5] M. Gugat, Optimal boundary control in flood management, Control of Coupled Partial Differential Equations, edited by K. Kunisch, J. Sprekels, G. Leugering and F. Tröltzsch, vol. 155 of Int. Ser. Numer. Math., Birkhäuser Verlag, Basel/Switzerland (2007) 69-94. | MR | Zbl

[6] Long Hu, Fanqiong Ji and Ke Wang, Exact boundary controllability and exact boundary observability for a coupled system of quasilinear wave equations. Chin. Ann. Math. B 34 (2013) 479-490. | MR | Zbl

[7] Ch. Huygens, Œuvres Complètes, vol. 15, edited by S. and B.V. Zeitlinger, Amsterdam (1967).

[8] Tatsien Li and Yi Jin, Semi-global C1 solution to the mixed initial-boundary value problem for quasilinear hyperbolic systems. Chin. Ann. Math. B 22 (2001) 325-336. | MR | Zbl

[9] Tatsien Li, Exact boundary observability for 1-D quasilinear wave equations. Math. Meth. Appl. Sci. 29 (2006) 1543-1553. | MR | Zbl

[10] Tatsien Li, Controllability and Observability for Quasilinear Hyperbolic Systems, vol. 3 of AIMS Ser. Appl. Math. AIMS and Higher Education Press (2010). | MR | Zbl

[11] Tatsien Li and Bopeng Rao, Strong (weak) exact controllability and strong (weak) exact observability for quasilinear hyperbolic systems. Chin. Annal. Math. B 31 (2010) 723-742. | MR | Zbl

[12] Tatsien Li and Bopeng Rao, Asymptotic controllability for linear hyperbolic systems. Asymp. Anal. 72 (2011) 169-187. | MR | Zbl

[13] Tatsien Li and Bopeng Rao, Exact synchronization for a coupled system of wave equations with Dirichlet boundary controls. Chin. Annal. Math. B 34 (2013) 139-160. | MR | Zbl

[14] J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilization de Systèmes Distribués, Vol. 1, Masson (1988). | MR | Zbl

[15] J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems. SIAM Review 30 (1988) 1-68. | MR | Zbl

[16] D.L. Russell, Controllability and stabilization theory for linear partial differential equations: Recent progress and open questions. SIAM Review 20 (1978) 639-739. | MR | Zbl

[17] S. Strogatz, SYNC: The Emerging Science of Spontaneous Order, THEIA, New York (2003).

[18] Ke Wang, Exact boundary controllability for a kind of second-order quasilinear hyperbolic systems. Chin. Ann. Math. B 32 (2011) 803-822. | MR | Zbl

[19] Chai Wah Wu, Synchronization in Complex Networks of Nonlinear Dynamical Systems. World Scientific (2007). | Zbl

[20] Lixin Yu, Exact boundary controllability for a kind of second-order quasilinear hyperbolic systems and its applications. Math. Meth. Appl. Sci. 33 (2010) 273-286. | MR | Zbl

Cité par Sources :