Multiplicity and concentration of positive solutions for the fractional Schrödinger–Poisson systems with critical growth
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 4, pp. 1515-1542.

In this paper, we study the multiplicity and concentration of solutions for the following critical fractional Schrödinger–Poisson system:

ϵ 2s (-) s u+V(x)u+ϕu=f(u)+|u| 2 s * -2 uin 3 ,ϵ 2t (-) t ϕ=u 2 in 3 ,
where ϵ>0 is a small parameter, (-) α denotes the fractional Laplacian of order α=s,t(0,1), where 2 α * 6/3−2α is the fractional critical exponent in Dimension 3; VC 1 ( 3 , + ) and f is subcritical. We first prove that for ϵ>0 sufficiently small, the system has a positive ground state solution. With minimax theorems and Ljusternik–Schnirelmann theory, we investigate the relation between the number of positive solutions and the topology of the set where V attains its minimum for small ϵ. Moreover, each positive solution u ϵ converges to the least energy solution of the associated limit problem and concentrates around a global minimum point of V.

DOI : 10.1051/cocv/2016063
Classification : 35B25, 35B38, 35J65
Mots-clés : Fractional Schrödinger–Poisson system, positive solution, critical growth, variational method
Liu, Zhisu 1 ; Zhang, Jianjun 2, 3

1 School of Mathematics and Physics, University of South China, Hengyang, Hunan 421001, P.R. China.
2 College of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing 400074, P.R. China.
3 Chern Institute of Mathematics, Nankai University, Tianjin 300071, P.R. China.
@article{COCV_2017__23_4_1515_0,
     author = {Liu, Zhisu and Zhang, Jianjun},
     title = {Multiplicity and concentration of positive solutions for the fractional {Schr\"odinger{\textendash}Poisson} systems with critical growth},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1515--1542},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {4},
     year = {2017},
     doi = {10.1051/cocv/2016063},
     mrnumber = {3716931},
     zbl = {06811887},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2016063/}
}
TY  - JOUR
AU  - Liu, Zhisu
AU  - Zhang, Jianjun
TI  - Multiplicity and concentration of positive solutions for the fractional Schrödinger–Poisson systems with critical growth
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 1515
EP  - 1542
VL  - 23
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2016063/
DO  - 10.1051/cocv/2016063
LA  - en
ID  - COCV_2017__23_4_1515_0
ER  - 
%0 Journal Article
%A Liu, Zhisu
%A Zhang, Jianjun
%T Multiplicity and concentration of positive solutions for the fractional Schrödinger–Poisson systems with critical growth
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 1515-1542
%V 23
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2016063/
%R 10.1051/cocv/2016063
%G en
%F COCV_2017__23_4_1515_0
Liu, Zhisu; Zhang, Jianjun. Multiplicity and concentration of positive solutions for the fractional Schrödinger–Poisson systems with critical growth. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 4, pp. 1515-1542. doi : 10.1051/cocv/2016063. http://www.numdam.org/articles/10.1051/cocv/2016063/

N. Ackermann, Lévy processes-from probability theory to finance and quantum groups. Notices Am. Math. Soc. 51 (2004) 320–1331.

C. Alves and O. Miyagaki, Existence and concentration of solution for a class of fractional elliptic equation in R N via penalization method. To appear in Cal. Var. Partial Differ. Equ. (2016). | MR

T. D’Aprile and J. Wei, On bound states concentrating on spheres for the Maxwell-Schrödinger equation. SIAM J. Math. Anal. 37 (2005) 321–342. | DOI | MR | Zbl

A. Azzollini, P. D’Avenia and A. Pomponio, On the Schrödinger-Maxwell equations under the effect of a general nonlinear term. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 27 (2010) 779–791. | DOI | Numdam | MR | Zbl

A. Azzollini and A. Pomponio, Ground state solutions for nonlinear Schrödinger-Maxwell equations. J. Math. Anal. Appl. 345 (2008) 90–108. | DOI | MR | Zbl

A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger–Poisson problem. Commun. Contemp. Math. 10 (2008) 391–404. | DOI | MR | Zbl

V. Benci and G. Cerami, Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology. Cal. Var. Partial Differ. Equ. 2 (1994) 29–48. | DOI | MR | Zbl

V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations. Topol. Methods Nonlinear Anal. 11 (1998) 283–293. | DOI | MR | Zbl

H. Berestycki and P. Lions, Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 82 (1983) 313–345. | DOI | MR | Zbl

B. Barrios, E. Colorado, R. Servadei and F. Soria, A critical fractional equation with concave-convex power nonlinearities. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 32 (2015) 875–900. | DOI | Numdam | MR | Zbl

H. Brezis and E.H. Lieb, A relation between pointwise convergence of functions and convergence of functionals. Proc. Amer. Math. Soc. 8 (1983) 486–490. | DOI | MR | Zbl

X. Chang and Z. Wang, Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity. Nonlinearity 26 (2013) 479–494. | DOI | MR | Zbl

G. Chen and Y. Zheng, Concentration phenomenon for fractional nonlinear Schrödinger equations. Commun. Pure Appl. Anal. 13 (2014) 2359–2376. | DOI | MR | Zbl

G. Cotsiolis and N. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives. J. Math. Anal. Appl. 295 (2004) 225–236. | DOI | MR | Zbl

J. Dávila, M. Pino and J. Wei, Concentrating standing waves for the fractional nonlinear Schrödinger equation. J. Differ. Equ. 256 (2014) 858–892. | DOI | MR | Zbl

J. Dávila, M. Pino, S. Dipierro and E. Valdinoci, Concentration phenomena for the nonlocal Schrödinger equation with Dirichlet datum. Anal. Partial Differ. Equ. 8 (2015) 1165–1235. | MR | Zbl

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012) 521–573. | DOI | MR | Zbl

E. Fabes, C. Kenig and R. Serapioni, The local regularity of solutions of degenerate elliptic equations. Commun. Partial Differ. Equ. 7 (1982) 77–116. | DOI | MR | Zbl

P. Felmer, A. Quaas and J. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. R. Soc. Edinb. Sect. A 142 (2012) 1237–1262. | DOI | MR | Zbl

I. Ekeland, On the variational principle. J. Math. Anal. Appl. 47 (1974) 324–353. | DOI | MR | Zbl

M. Fall, F. Mahmoudi and E. Valdinoci, Ground states and concentration phenomena for the fractional Schrödinger equation. Nonlinearity 28 (2015) 1937–1961. | DOI | MR | Zbl

R. Frank and E. Lenzmann, Uniqueness and non degeneracy of ground states for (-) s +Q-Q α+1 =0 in R. Acta Math. 210 (2013) 261–318. | Zbl

R. Frank, E. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional laplacian. Commun. Pure. Appl. Math. 69 (2016) 1671–1726. | DOI | MR | Zbl

A. Giammetta, Fractional Schrödinger–Poisson-Slater system in one dimension. Preprint (2014). | arXiv

X. He, Multiplicity and concentration of positive solutions for the Schrödinger–Poisson equations. Z. Angew. Math. Phys. 62 (2011) 869–889. | DOI | MR | Zbl

X. He and W. Zou, Existence and concentration of ground states for Schrödinger–Poisson equations with critical growth. J. Math. Phys. 53 (2012) 023702. | DOI | MR | Zbl

I. Ianni and G. Vaira, On concentration of positive bound states for the Schrödinger–Poisson problem with potentials. Adv. Nonlinear Stud. 8 (2008) 573–595. | DOI | MR | Zbl

N. Laskin, Fractional Schrödinger equation. Phys. Rev. E 66 (2002) 056108. | DOI | MR

Z. Liu and S. Guo, On ground state solutions for the Schrödinger–Poisson equations with critical growth. J. Math. Anal. Appl. 412 (2014) 435–448. | DOI | MR | Zbl

Z. Liu, S. Guo and Y. Fang, Multiple semiclassical states for coupled Schrödinger–Poisson equations with critical exponential growth. J. Math. Phys. 56 (2015) 041505. | DOI | MR | Zbl

G. Palatucci and A. Pisante, Improved Sobolev embeddings, profile decomposition, and concentration compactness for fractional Sobolev spaces. Calc. Var. 56 (2015) 041505. | MR | Zbl

P. Rabinowitz, On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43 (1992) 270–291. | DOI | MR | Zbl

D. Ruiz, Semiclassical states for coupled Schrödinger-Maxwell equations: Concentration around a sphere. Math. Models Methods Appl. Sci. 15 (2005) 141–164. | DOI | MR | Zbl

D. Ruiz, The Schrödinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237 (2006) 655–674. | DOI | MR | Zbl

S. Secchi, On fractional Schrödinger equations in R N without the Ambrosetti-Rabinowitz condition. Topol. Methods Nonlinear Anal. 47 (2016) 19–41. | MR | Zbl

S. Secchi, Ground state solutions for nonlinear fractional Schrödinger equations in R N . J. Math. Phys. 54 (2013) 031501. | DOI | MR | Zbl

R. Servadei and E. Valdinoci, A Brezis-Nirenberg result for non-local critical equations in low dimension. Commun. Pure Appl. Anal. 6 (2013) 2445–2464. | DOI | MR | Zbl

R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian. Trans. Am. Math. Soc. 367 (2015) 67–102. | DOI | MR | Zbl

L. Silvestre, Hölder estimates for solutions of integro-differential equations like the fractional Laplace. Indiana Univ. Math. J. 55 (2006) 1155–1174. | DOI | MR | Zbl

X. Shang and J. Zhang, On fractional Schrödinger equations in R N with critical growth. J. Math. Phys. 54 (2013) 121502. | DOI | MR | Zbl

X. Shang and J. Zhang, Ground states for fractional Schrödinger equations with critical growth. Nonlinearity 27 (2014) 187–207. | DOI | MR | Zbl

X. Shang and J. Zhang, Concentrating solutions of nonlinear fractional Schrödinger equation with potentials. J. Differ. Equ. 258 (2015) 1106–1128. | DOI | MR | Zbl

M. Struwe, Variational Methods; Application to Nonlinear Partial Differential Equations and Hamiltonian Systems. Springer-Verlag (2007). | MR

J. Tan, The Brezis-Nirenberg type problem involving the square root of the Laplacian. Calc. Var. Partial Differ. Equ. 42 (2011) 21–41. | DOI | MR | Zbl

J. Wang, L. Tian, J. Xu and F. Zhang, Existence and concentration of positive solutions for semilinear Schrödinger–Poisson systems in R 3 . Calc. Var. Partial Differ. Equ. 48 (2013) 243–273. | DOI | MR | Zbl

X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations. Commun. Math. Phys. 153 (1993) 229–244. | DOI | MR | Zbl

L. Zhao and F. Zhao, On the existence of solutions for the Schrödinger–Poisson equations. J. Math. Anal. Appl. 346 (2008) 155–169. | DOI | MR | Zbl

J. Zhang, The existence and concentration of positive solutions for a nonlinear Schrödinger–Poisson system with critical growth. J. Math. Phys. 55 (2014) 031507. | DOI | MR | Zbl

J. Zhang, J.M. Do Ó and M. Squassina, Fractional Schrödinger–Poisson systems with a general subcritical or critical nonlinearity. Adv. Nonlinear Stud. 16 (2016) 15–30. | DOI | MR | Zbl

Cité par Sources :