In this work we study the following fractional critical problem
Mots-clés : Fractional Laplacian, Critical nonlinearities, Convex–concave nonlinearities, Variational techniques, Mountain Pass Theorem
@article{AIHPC_2015__32_4_875_0, author = {Barrios, B. and Colorado, E. and Servadei, R. and Soria, F.}, title = {A critical fractional equation with concave{\textendash}convex power nonlinearities}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {875--900}, publisher = {Elsevier}, volume = {32}, number = {4}, year = {2015}, doi = {10.1016/j.anihpc.2014.04.003}, mrnumber = {3390088}, zbl = {1350.49009}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2014.04.003/} }
TY - JOUR AU - Barrios, B. AU - Colorado, E. AU - Servadei, R. AU - Soria, F. TI - A critical fractional equation with concave–convex power nonlinearities JO - Annales de l'I.H.P. Analyse non linéaire PY - 2015 SP - 875 EP - 900 VL - 32 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2014.04.003/ DO - 10.1016/j.anihpc.2014.04.003 LA - en ID - AIHPC_2015__32_4_875_0 ER -
%0 Journal Article %A Barrios, B. %A Colorado, E. %A Servadei, R. %A Soria, F. %T A critical fractional equation with concave–convex power nonlinearities %J Annales de l'I.H.P. Analyse non linéaire %D 2015 %P 875-900 %V 32 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2014.04.003/ %R 10.1016/j.anihpc.2014.04.003 %G en %F AIHPC_2015__32_4_875_0
Barrios, B.; Colorado, E.; Servadei, R.; Soria, F. A critical fractional equation with concave–convex power nonlinearities. Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) no. 4, pp. 875-900. doi : 10.1016/j.anihpc.2014.04.003. http://www.numdam.org/articles/10.1016/j.anihpc.2014.04.003/
[1] Effect of the boundary conditions in the behavior of the optimal constant of some Caffarelli–Kohn–Nirenberg inequalities. Application to some doubly critical nonlinear elliptic problems, Adv. Differ. Equ. 11 no. 6 (2006), 667 -720 | MR | Zbl
, , ,[2] Sobolev Spaces, Academic Press (1975) | MR | Zbl
,[3] Semilinear elliptic equations with sublinear indefinite nonlinearities, Adv. Differ. Equ. 4 (1999), 813 -842 | MR | Zbl
,[4] Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 no. 2 (1994), 519 -543 | MR | Zbl
, , ,[5] Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349 -381 | MR | Zbl
, ,[6] Lévy Processes and Stochastic Calculus, Camb. Stud. Adv. Math. vol. 116 , Cambridge University Press, Cambridge (2009) | MR | Zbl
,[7] On some critical problems for the fractional Laplacian operator, J. Differ. Equ. 252 (2012), 6133 -6162 | MR | Zbl
, , , ,[8] Some remarks on the solvability of non-local elliptic problems with the Hardy potential, http://dx.doi.org/10.1142/S0219199713500466 | Zbl
, , ,[9] Lévy Processes, Camb. Tracts Math. vol. 121 , Cambridge University Press, Cambridge (1996) | MR | Zbl
,[10] A Dirichlet problem involving critical exponents, Nonlinear Anal. 24 no. 11 (1995), 1639 -1648 | MR | Zbl
, , ,[11] A concave–convex elliptic problem involving the fractional Laplacian, Proc. R. Soc. Edinb. A 143 (2013), 39 -71 | MR | Zbl
, , , ,[12] A relation between pointwise convergence of functions and convergence of functionals, Proc. Am. Math. Soc. 88 no. 3 (1983), 486 -490 | MR | Zbl
, ,[13] Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math. 36 no. 4 (1983), 437 -477 | MR | Zbl
, ,[14] Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math. 224 (2010), 2052 -2093 | MR | Zbl
, ,[15] Variational problems with free boundaries for the fractional Laplacian, J. Eur. Math. Soc. 12 (2010), 1151 -1179 | EuDML | MR | Zbl
, , ,[16] An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ. 32 (2003), 1245 -1260 | MR | Zbl
, ,[17] Multiplicity of solutions to uniformly elliptic fully nonlinear equations with concave–convex right-hand side, J. Differ. Equ. 246 no. 11 (2009), 4221 -4248 | MR | Zbl
, , ,[18] Semilinear elliptic problems with mixed Dirichlet–Neumann boundary conditions, J. Funct. Anal. 199 (2003), 468 -507 | MR | Zbl
, ,[19] Perturbations of a critical fractional equation, Pac. J. Math. (2014) | MR | Zbl
, , ,[20] Financial Modelling with Jump Processes, Chapman & Hall/CRC Financ. Math. Ser. , Chapman and Hall/CRC, Boca Raton, Fl (2004) | MR | Zbl
, ,[21] Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl. 295 (2004), 225 -236 | MR | Zbl
, ,[22] Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 no. 5 (2012), 521 -573 | MR | Zbl
, , ,[23] Nonexistence results for a class of fractional elliptic boundary value problems, J. Funct. Anal. 263 no. 8 (2012), 2205 -2227 | MR | Zbl
, ,[24] A. Fiscella, R. Servade, E. Valdinoci, Density properties for fractional Sobolev spaces, preprint, 2013. | MR
[25] Multiplicity of solutions for elliptic problems with critical exponent or with non-symmetric term, Trans. Am. Math. Soc. 323 no. 2 (1991), 877 -895 | MR | Zbl
, ,[26] A general mountain pass principle for locating and classifying critical points, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 6 no. 5 (1989), 321 -330 | EuDML | Numdam | MR | Zbl
, ,[27] A two-dimensional model for quasigeostrophic flow: comparison with the two-dimensional Euler flow, Nonlinear Phenomena in Ocean Dynamics Los Alamos, NM, 1995 Physica D 98 no. 2–4 (1996), 515 -522 | MR | Zbl
, ,[28] Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Grundlehren Math. Wiss. vol. 342 , Springer, Heidelberg (2011) | MR
,[29] , Proc. Natl. Acad. Sci. USA 51 (1964), 1055 -1056 | MR | Zbl
, ,[30] Lower semicontinuity of functionals of fractional type and applications to nonlocal equations with critical Sobolev exponent, http://www.ma.utexas.edu/mp_arc/index-13.html | Zbl
, ,[31] Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities, Ann. Math. 118 no. 2 (1983), 349 -374 | MR | Zbl
,[32] The concentration–compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoam. 1 no. 1 (1985), 145 -201 | EuDML | MR | Zbl
,[33] The concentration–compactness principle in the calculus of variations. The limit case. II, Rev. Mat. Iberoam. 1 no. 2 (1985), 45 -121 | EuDML | MR | Zbl
,[34] Improved Sobolev embeddings, profile decomposition and concentration–compactness for fractional Sobolev spaces, arXiv:1302.5923 | MR | Zbl
, ,[35] The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl. (9) 101 no. 3 (2014), 275 -302 | MR | Zbl
, ,[36] The Pohozaev identity for the fractional Laplacian, arXiv:1207.5986 [math.AP] | MR | Zbl
, ,[37] The Yamabe equation in a non-local setting, Adv. Nonlinear Anal. 2 (2013), 235 -270 | MR | Zbl
,[38] A critical fractional Laplace equation in the resonant case, Topol. Methods Nonlinear Anal. 43 no. 1 (2014), 251 -267 | MR
,[39] Lewy–Stampacchia type estimates for variational inequalities driven by (non)local operators, Rev. Mat. Iberoam. 29 (2013), 1091 -1126 | MR | Zbl
, ,[40] Mountain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl. 389 (2012), 887 -898 | MR | Zbl
, ,[41] The Brezis–Nirenberg result for the fractional Laplacian, Trans. Am. Math. Soc. (2014) | MR | Zbl
, ,[42] A Brezis–Nirenberg result for non-local critical equations in low dimension, Commun. Pure Appl. Anal. 12 no. 6 (2013), 2445 -2464 | MR | Zbl
, ,[43] Fractional Laplacian equations with critical Sobolev exponent, http://www.ma.utexas.edu/mp_arc/index-13.html | Zbl
, ,[44] Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat. 58 no. 1 (2014), 133 -154 | MR | Zbl
, ,[45] Regularity of the obstacle problem for a fractional power of the Laplace operator, Commun. Pure Appl. Math. 60 no. 1 (2007), 67 -112 | MR | Zbl
,[46] Singular Integrals and Differentiability Properties of Functions, Princet. Math. Ser. vol. 30 , Princeton University Press, Princeton, NJ (1970) | MR | Zbl
,[47] Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Ergeb. Math. Ihrer Grenzgeb. vol. 3 , Springer-Verlag, Berlin, Heidelberg (1990) | MR | Zbl
,[48] The Brezis–Nirenberg type problem involving the square root of the Laplacian, Calc. Var. Partial Differ. Equ. 36 no. 1–2 (2011), 21 -41 | MR | Zbl
,[49] From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl. Se MA 49 (2009), 33 -44 | MR | Zbl
,[50] Normal and anomalous diffusion: a tutorial, (ed.), Order and Chaos, 10th Volume, Patras University Press (2008)
, , , ,[51] Minimax Theorems, Prog. Nonlinear Differ. Equ. Appl. vol. 24 , Birkhäuser, Boston (1996) | MR | Zbl
,Cité par Sources :