A critical fractional equation with concave–convex power nonlinearities
Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) no. 4, pp. 875-900.

In this work we study the following fractional critical problem

(Pλ)={(-Δ)su=λuq+u2s-1,u>0inΩ,u=0innΩ,
where Ωn is a regular bounded domain, λ>0, 0<s<1 and n>2s. Here (-Δ)s denotes the fractional Laplace operator defined, up to a normalization factor, by
-(-Δ)su(x)=nu(x+y)+u(x-y)-2u(x)|y|n+2sdy,xn.
Our main results show the existence and multiplicity of solutions to problem (Pλ) for different values of λ. The dependency on this parameter changes according to whether we consider the concave power case (0<q<1) or the convex power case (1<q<2s-1). These two cases will be treated separately.

DOI : 10.1016/j.anihpc.2014.04.003
Classification : 49J35, 35A15, 35S15, 47G20, 45G05
Mots-clés : Fractional Laplacian, Critical nonlinearities, Convex–concave nonlinearities, Variational techniques, Mountain Pass Theorem
@article{AIHPC_2015__32_4_875_0,
     author = {Barrios, B. and Colorado, E. and Servadei, R. and Soria, F.},
     title = {A critical fractional equation with concave{\textendash}convex power nonlinearities},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {875--900},
     publisher = {Elsevier},
     volume = {32},
     number = {4},
     year = {2015},
     doi = {10.1016/j.anihpc.2014.04.003},
     mrnumber = {3390088},
     zbl = {1350.49009},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.anihpc.2014.04.003/}
}
TY  - JOUR
AU  - Barrios, B.
AU  - Colorado, E.
AU  - Servadei, R.
AU  - Soria, F.
TI  - A critical fractional equation with concave–convex power nonlinearities
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2015
SP  - 875
EP  - 900
VL  - 32
IS  - 4
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.anihpc.2014.04.003/
DO  - 10.1016/j.anihpc.2014.04.003
LA  - en
ID  - AIHPC_2015__32_4_875_0
ER  - 
%0 Journal Article
%A Barrios, B.
%A Colorado, E.
%A Servadei, R.
%A Soria, F.
%T A critical fractional equation with concave–convex power nonlinearities
%J Annales de l'I.H.P. Analyse non linéaire
%D 2015
%P 875-900
%V 32
%N 4
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2014.04.003/
%R 10.1016/j.anihpc.2014.04.003
%G en
%F AIHPC_2015__32_4_875_0
Barrios, B.; Colorado, E.; Servadei, R.; Soria, F. A critical fractional equation with concave–convex power nonlinearities. Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) no. 4, pp. 875-900. doi : 10.1016/j.anihpc.2014.04.003. https://www.numdam.org/articles/10.1016/j.anihpc.2014.04.003/

[1] B. Abdellaoui, E. Colorado, I. Peral, Effect of the boundary conditions in the behavior of the optimal constant of some Caffarelli–Kohn–Nirenberg inequalities. Application to some doubly critical nonlinear elliptic problems, Adv. Differ. Equ. 11 no. 6 (2006), 667 -720 | MR | Zbl

[2] R. Adams, Sobolev Spaces, Academic Press (1975) | MR | Zbl

[3] S. Alama, Semilinear elliptic equations with sublinear indefinite nonlinearities, Adv. Differ. Equ. 4 (1999), 813 -842 | MR | Zbl

[4] A. Ambrosetti, H. Brezis, G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 no. 2 (1994), 519 -543 | MR | Zbl

[5] A. Ambrosetti, P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349 -381 | MR | Zbl

[6] D. Applebaum, Lévy Processes and Stochastic Calculus, Camb. Stud. Adv. Math. vol. 116 , Cambridge University Press, Cambridge (2009) | MR | Zbl

[7] B. Barrios, E. Colorado, A. De Pablo, U. Sanchez, On some critical problems for the fractional Laplacian operator, J. Differ. Equ. 252 (2012), 6133 -6162 | MR | Zbl

[8] B. Barrios, M. Medina, I. Peral, Some remarks on the solvability of non-local elliptic problems with the Hardy potential, http://dx.doi.org/10.1142/S0219199713500466 | Zbl

[9] J. Bertoin, Lévy Processes, Camb. Tracts Math. vol. 121 , Cambridge University Press, Cambridge (1996) | MR | Zbl

[10] L. Boccardo, M. Escobedo, I. Peral, A Dirichlet problem involving critical exponents, Nonlinear Anal. 24 no. 11 (1995), 1639 -1648 | MR | Zbl

[11] C. Brändle, E. Colorado, A. De Pablo, U. Sánchez, A concave–convex elliptic problem involving the fractional Laplacian, Proc. R. Soc. Edinb. A 143 (2013), 39 -71 | MR | Zbl

[12] H. Brezis, E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Am. Math. Soc. 88 no. 3 (1983), 486 -490 | MR | Zbl

[13] H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math. 36 no. 4 (1983), 437 -477 | MR | Zbl

[14] X. Cabré, J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math. 224 (2010), 2052 -2093 | MR | Zbl

[15] L. Caffarelli, J.M. Roquejoffre, Y. Sire, Variational problems with free boundaries for the fractional Laplacian, J. Eur. Math. Soc. 12 (2010), 1151 -1179 | EuDML | MR | Zbl

[16] L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ. 32 (2003), 1245 -1260 | MR | Zbl

[17] F. Charro, E. Colorado, I. Peral, Multiplicity of solutions to uniformly elliptic fully nonlinear equations with concave–convex right-hand side, J. Differ. Equ. 246 no. 11 (2009), 4221 -4248 | MR | Zbl

[18] E. Colorado, I. Peral, Semilinear elliptic problems with mixed Dirichlet–Neumann boundary conditions, J. Funct. Anal. 199 (2003), 468 -507 | MR | Zbl

[19] E. Colorado, A. De Pablo, U. Sanchez, Perturbations of a critical fractional equation, Pac. J. Math. (2014) | MR | Zbl

[20] R. Cont, P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC Financ. Math. Ser. , Chapman and Hall/CRC, Boca Raton, Fl (2004) | MR | Zbl

[21] A. Cotsiolis, N. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl. 295 (2004), 225 -236 | MR | Zbl

[22] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 no. 5 (2012), 521 -573 | MR | Zbl

[23] M.M. Fall, T. Weth, Nonexistence results for a class of fractional elliptic boundary value problems, J. Funct. Anal. 263 no. 8 (2012), 2205 -2227 | MR | Zbl

[24] A. Fiscella, R. Servade, E. Valdinoci, Density properties for fractional Sobolev spaces, preprint, 2013. | MR

[25] J. García-Azorero, I. Peral, Multiplicity of solutions for elliptic problems with critical exponent or with non-symmetric term, Trans. Am. Math. Soc. 323 no. 2 (1991), 877 -895 | MR | Zbl

[26] N. Ghoussoub, D. Preiss, A general mountain pass principle for locating and classifying critical points, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 6 no. 5 (1989), 321 -330 | EuDML | Numdam | MR | Zbl

[27] A. Majda, E. Tabak, A two-dimensional model for quasigeostrophic flow: comparison with the two-dimensional Euler flow, Nonlinear Phenomena in Ocean Dynamics Los Alamos, NM, 1995 Physica D 98 no. 2–4 (1996), 515 -522 | MR | Zbl

[28] V. Maz'Ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Grundlehren Math. Wiss. vol. 342 , Springer, Heidelberg (2011) | MR

[29] N. Meyers, J. Serrin, H=W , Proc. Natl. Acad. Sci. USA 51 (1964), 1055 -1056 | MR | Zbl

[30] G. Molica Bisci, R. Servadei, Lower semicontinuity of functionals of fractional type and applications to nonlocal equations with critical Sobolev exponent, http://www.ma.utexas.edu/mp_arc/index-13.html | Zbl

[31] E. Lieb, Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities, Ann. Math. 118 no. 2 (1983), 349 -374 | MR | Zbl

[32] P.-L. Lions, The concentration–compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoam. 1 no. 1 (1985), 145 -201 | EuDML | MR | Zbl

[33] P.-L. Lions, The concentration–compactness principle in the calculus of variations. The limit case. II, Rev. Mat. Iberoam. 1 no. 2 (1985), 45 -121 | EuDML | MR | Zbl

[34] G. Palatucci, A. Pisante, Improved Sobolev embeddings, profile decomposition and concentration–compactness for fractional Sobolev spaces, arXiv:1302.5923 | MR | Zbl

[35] J. Serra, X. Ros-Oton, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl. (9) 101 no. 3 (2014), 275 -302 | MR | Zbl

[36] J. Serra, X. Ros-Oton, The Pohozaev identity for the fractional Laplacian, arXiv:1207.5986 [math.AP] | MR | Zbl

[37] R. Servadei, The Yamabe equation in a non-local setting, Adv. Nonlinear Anal. 2 (2013), 235 -270 | MR | Zbl

[38] R. Servadei, A critical fractional Laplace equation in the resonant case, Topol. Methods Nonlinear Anal. 43 no. 1 (2014), 251 -267 | MR

[39] R. Servadei, E. Valdinoci, Lewy–Stampacchia type estimates for variational inequalities driven by (non)local operators, Rev. Mat. Iberoam. 29 (2013), 1091 -1126 | MR | Zbl

[40] R. Servadei, E. Valdinoci, Mountain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl. 389 (2012), 887 -898 | MR | Zbl

[41] R. Servadei, E. Valdinoci, The Brezis–Nirenberg result for the fractional Laplacian, Trans. Am. Math. Soc. (2014) | MR | Zbl

[42] R. Servadei, E. Valdinoci, A Brezis–Nirenberg result for non-local critical equations in low dimension, Commun. Pure Appl. Anal. 12 no. 6 (2013), 2445 -2464 | MR | Zbl

[43] R. Servadei, E. Valdinoci, Fractional Laplacian equations with critical Sobolev exponent, http://www.ma.utexas.edu/mp_arc/index-13.html | Zbl

[44] R. Servadei, E. Valdinoci, Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat. 58 no. 1 (2014), 133 -154 | MR | Zbl

[45] L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Commun. Pure Appl. Math. 60 no. 1 (2007), 67 -112 | MR | Zbl

[46] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princet. Math. Ser. vol. 30 , Princeton University Press, Princeton, NJ (1970) | MR | Zbl

[47] M. Struwe, Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Ergeb. Math. Ihrer Grenzgeb. vol. 3 , Springer-Verlag, Berlin, Heidelberg (1990) | MR | Zbl

[48] J. Tan, The Brezis–Nirenberg type problem involving the square root of the Laplacian, Calc. Var. Partial Differ. Equ. 36 no. 1–2 (2011), 21 -41 | MR | Zbl

[49] E. Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl. Se MA 49 (2009), 33 -44 | MR | Zbl

[50] L. Vlahos, H. Isliker, Y. Kominis, K. Hizonidis, Normal and anomalous diffusion: a tutorial, T. Bountis (ed.), Order and Chaos, 10th Volume, Patras University Press (2008)

[51] M. Willem, Minimax Theorems, Prog. Nonlinear Differ. Equ. Appl. vol. 24 , Birkhäuser, Boston (1996) | MR | Zbl

Cité par Sources :