In this paper, a behavior of certain modified Perona−Malik functionals is considered as the parameter, which determines the scaling and the amount of the regularization, tends to zero.
Accepté le :
DOI : 10.1051/cocv/2016062
Mots-clés : Mumford-Shah, Perona-Malik, Gamma-convergence
@article{COCV_2017__23_4_1499_0, author = {Tiirola, Juha}, title = {Gamma-convergence of certain modified {Perona-Malik} functionals}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1499--1513}, publisher = {EDP-Sciences}, volume = {23}, number = {4}, year = {2017}, doi = {10.1051/cocv/2016062}, mrnumber = {3716930}, zbl = {1426.49013}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2016062/} }
TY - JOUR AU - Tiirola, Juha TI - Gamma-convergence of certain modified Perona-Malik functionals JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2017 SP - 1499 EP - 1513 VL - 23 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2016062/ DO - 10.1051/cocv/2016062 LA - en ID - COCV_2017__23_4_1499_0 ER -
%0 Journal Article %A Tiirola, Juha %T Gamma-convergence of certain modified Perona-Malik functionals %J ESAIM: Control, Optimisation and Calculus of Variations %D 2017 %P 1499-1513 %V 23 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2016062/ %R 10.1051/cocv/2016062 %G en %F COCV_2017__23_4_1499_0
Tiirola, Juha. Gamma-convergence of certain modified Perona-Malik functionals. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 4, pp. 1499-1513. doi : 10.1051/cocv/2016062. http://www.numdam.org/articles/10.1051/cocv/2016062/
Variational Convergence for Functionals of Ginzburg-Landau Type. Indiana Univ. Math. J. 54 (2005) 1411–1472. | DOI | MR | Zbl
, and ,L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. Oxford University Press, New York (2000). | MR | Zbl
Approximation of functionals depending on jumps by elliptic functionals via -convergence. Commun. Pure Appl. Math. 43 (1990) 999–1036. | DOI | MR | Zbl
and ,H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization. SIAM (2005). | MR | Zbl
G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations. Springer Verlag New York (2006). | MR | Zbl
A. Braides, -convergence for Beginners. Oxford University Press, Oxford (2002). | MR | Zbl
Non-Local Approximation of the Mumford−Shah Functional. Calc. Var. Partial Differ. Equ. 5 (1997) 293–322. | DOI | MR | Zbl
and ,An extension theorem in SBV and an application to the homogenization of the Mumford−Shah functional in perforated domains. J. Math. Pures Appl. 95 (1997) 349–381. | DOI | MR | Zbl
and ,Discrete Approximation of the Mumford−Shah Functional in Dimension Two. ESAIM: M2AN 33 (1999) 651–672. | DOI | Numdam | MR | Zbl
and ,Image Segmentation by Variational Methods: Mumford and Shah Functional and the Discrete Approximations. SIAM J. Appl. Math. 55 (1995) 827–863. | DOI | MR | Zbl
,Strong approximation of functions by piecewise smooth functions. Ann. Univ. Ferrara Sez. VII Sci. Mat. 43 (1997) 22–49. | DOI | MR | Zbl
,L. Evans and R. Gariepy, Measure theory and fine properties of functions. CRC Press, Boca Raton (1992). | MR | Zbl
Non-local Approximation of Functionals: Variational and Evolution Problems. Boll. Unione Mat. Ital., Ser. A, Mat. Soc. Cult. (8) 3-B (2000) 315–324. | MR | Zbl
,Finite Difference Approximation of the Mumford−Shah Functional. Commun. Pure Appl. Math. 51 (1998) 197–228. | DOI | MR | Zbl
,P. Harjulehto, P. Hästö and Ú.V. Lê, Analysis of the Geman−McClure model for image restoration (2012).
Point-wise behavior of the Geman−McClure and the Hebert−Leahy image restoration models. Inverse Probl. Imaging 9 (2015) 835–851. | DOI | MR | Zbl
, and ,From Mumford−Shah to Perona−Malik in image processing. Math. Methods Appl. Sci. 27 (2004) 1803–1814. | DOI | MR | Zbl
,Hardy Spaces of Exact Forms on Lipschitz Domains in . Indiana Univ. Math. J. 53 (2004) 583–612. | DOI | MR | Zbl
and ,Gamma-limits of convolution functionals. ESAIM: COCV 19 (2013) 486–515. | Numdam | MR | Zbl
and ,Mumford−Shah Functional as -Limit of Discrete Perona−Malik Energies. Math. Models Methods Appl. Sci. 13 (2003) 785–805. | DOI | MR | Zbl
and ,Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42 (1989) 577–685. | DOI | MR | Zbl
and ,A non-local approximation of free discontinuity problems in and . Calc. Var. 25 (2005) 33–62. | DOI | MR | Zbl
,Scale space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12 (1990) 629–639. | DOI
and ,Cité par Sources :