Gamma-convergence of certain modified Perona-Malik functionals
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 4, pp. 1499-1513.

In this paper, a behavior of certain modified Perona−Malik functionals is considered as the parameter, which determines the scaling and the amount of the regularization, tends to zero.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2016062
Classification : 94A08, 49J45, 49N45
Mots-clés : Mumford-Shah, Perona-Malik, Gamma-convergence
Tiirola, Juha 1

1 Department of Mathematical Sciences, P.O. Box 3000, 90014 University of Oulu, Finland
@article{COCV_2017__23_4_1499_0,
     author = {Tiirola, Juha},
     title = {Gamma-convergence of certain modified {Perona-Malik} functionals},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1499--1513},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {4},
     year = {2017},
     doi = {10.1051/cocv/2016062},
     mrnumber = {3716930},
     zbl = {1426.49013},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2016062/}
}
TY  - JOUR
AU  - Tiirola, Juha
TI  - Gamma-convergence of certain modified Perona-Malik functionals
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 1499
EP  - 1513
VL  - 23
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2016062/
DO  - 10.1051/cocv/2016062
LA  - en
ID  - COCV_2017__23_4_1499_0
ER  - 
%0 Journal Article
%A Tiirola, Juha
%T Gamma-convergence of certain modified Perona-Malik functionals
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 1499-1513
%V 23
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2016062/
%R 10.1051/cocv/2016062
%G en
%F COCV_2017__23_4_1499_0
Tiirola, Juha. Gamma-convergence of certain modified Perona-Malik functionals. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 4, pp. 1499-1513. doi : 10.1051/cocv/2016062. http://www.numdam.org/articles/10.1051/cocv/2016062/

G. Alberti, S. Baldo and G. Orlandi, Variational Convergence for Functionals of Ginzburg-Landau Type. Indiana Univ. Math. J. 54 (2005) 1411–1472. | DOI | MR | Zbl

L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. Oxford University Press, New York (2000). | MR | Zbl

L. Ambrosio and V.M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Commun. Pure Appl. Math. 43 (1990) 999–1036. | DOI | MR | Zbl

H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization. SIAM (2005). | MR | Zbl

G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations. Springer Verlag New York (2006). | MR | Zbl

A. Braides, Γ-convergence for Beginners. Oxford University Press, Oxford (2002). | MR | Zbl

A. Braides and G. Dal Maso, Non-Local Approximation of the Mumford−Shah Functional. Calc. Var. Partial Differ. Equ. 5 (1997) 293–322. | DOI | MR | Zbl

F. Cagnetti and L. Scardia, An extension theorem in SBV and an application to the homogenization of the Mumford−Shah functional in perforated domains. J. Math. Pures Appl. 95 (1997) 349–381. | DOI | MR | Zbl

A. Chambolle and G. Dal Maso, Discrete Approximation of the Mumford−Shah Functional in Dimension Two. ESAIM: M2AN 33 (1999) 651–672. | DOI | Numdam | MR | Zbl

A. Chambolle, Image Segmentation by Variational Methods: Mumford and Shah Functional and the Discrete Approximations. SIAM J. Appl. Math. 55 (1995) 827–863. | DOI | MR | Zbl

G. Cortesani, Strong approximation of GSBV functions by piecewise smooth functions. Ann. Univ. Ferrara Sez. VII Sci. Mat. 43 (1997) 22–49. | DOI | MR | Zbl

L. Evans and R. Gariepy, Measure theory and fine properties of functions. CRC Press, Boca Raton (1992). | MR | Zbl

M. Gobbino, Non-local Approximation of Functionals: Variational and Evolution Problems. Boll. Unione Mat. Ital., Ser. A, Mat. Soc. Cult. (8) 3-B (2000) 315–324. | MR | Zbl

M. Gobbino, Finite Difference Approximation of the Mumford−Shah Functional. Commun. Pure Appl. Math. 51 (1998) 197–228. | DOI | MR | Zbl

P. Harjulehto, P. Hästö and Ú.V. Lê, Analysis of the Geman−McClure model for image restoration (2012).

P. Harjulehto, P. Hästö and J. Tiirola, Point-wise behavior of the Geman−McClure and the Hebert−Leahy image restoration models. Inverse Probl. Imaging 9 (2015) 835–851. | DOI | MR | Zbl

B. Kawohl, From Mumford−Shah to Perona−Malik in image processing. Math. Methods Appl. Sci. 27 (2004) 1803–1814. | DOI | MR | Zbl

Z. Lou and A. Mcintosh, Hardy Spaces of Exact Forms on Lipschitz Domains in R N . Indiana Univ. Math. J. 53 (2004) 583–612. | DOI | MR | Zbl

L. Lussardi and A. Magni, Gamma-limits of convolution functionals. ESAIM: COCV 19 (2013) 486–515. | Numdam | MR | Zbl

M. Morini and M. Negri, Mumford−Shah Functional as Γ-Limit of Discrete Perona−Malik Energies. Math. Models Methods Appl. Sci. 13 (2003) 785–805. | DOI | MR | Zbl

D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42 (1989) 577–685. | DOI | MR | Zbl

M. Negri, A non-local approximation of free discontinuity problems in SBV and SBD. Calc. Var. 25 (2005) 33–62. | DOI | MR | Zbl

P. Perona and J. Malik, Scale space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12 (1990) 629–639. | DOI

Cité par Sources :