Based on the theory of semi-global classical solutions for quasilinear hyperbolic systems, under suitable hypotheses, an iteration procedure given by a unified constructive method is presented to establish the exact boundary synchronization for a coupled system of 1-D quasilinear wave equations with boundary conditions of various types.
Accepté le :
DOI : 10.1051/cocv/2016035
Mots-clés : Exact boundary synchronization, coupled system of quasilinear wave equations
@article{COCV_2016__22_4_1163_0, author = {Hu, Long and Li, Tatsien and Qu, Peng}, title = {Exact boundary synchronization for a coupled system of {1-D} quasilinear wave equations}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1163--1183}, publisher = {EDP-Sciences}, volume = {22}, number = {4}, year = {2016}, doi = {10.1051/cocv/2016035}, zbl = {1350.93040}, mrnumber = {3570498}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2016035/} }
TY - JOUR AU - Hu, Long AU - Li, Tatsien AU - Qu, Peng TI - Exact boundary synchronization for a coupled system of 1-D quasilinear wave equations JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2016 SP - 1163 EP - 1183 VL - 22 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2016035/ DO - 10.1051/cocv/2016035 LA - en ID - COCV_2016__22_4_1163_0 ER -
%0 Journal Article %A Hu, Long %A Li, Tatsien %A Qu, Peng %T Exact boundary synchronization for a coupled system of 1-D quasilinear wave equations %J ESAIM: Control, Optimisation and Calculus of Variations %D 2016 %P 1163-1183 %V 22 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2016035/ %R 10.1051/cocv/2016035 %G en %F COCV_2016__22_4_1163_0
Hu, Long; Li, Tatsien; Qu, Peng. Exact boundary synchronization for a coupled system of 1-D quasilinear wave equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 4, pp. 1163-1183. doi : 10.1051/cocv/2016035. http://www.numdam.org/articles/10.1051/cocv/2016035/
Stability theory of synchronized motion in coupled-oscillator systems. Prog. Theor. Phys. 69 (1983) 32–47. | DOI | Zbl
and ,Exact boundary controllability and exact boundary observability for a coupled system of quasilinear wave equations. Chin. Ann. Math. 34 (2013) 379–390. | Zbl
, and ,Exact Boundary Synchronization for a Coupled System of 1-D Wave Equations with coupled boundary conditions of dissipative type. Commun. Pure Appl. Anal. 13 (2014) 881–901. | Zbl
, , ,
Ch. Huygens, Œuvres Complètes, Vol. 15. Swets
Exact boundary controllability for quasilinear wave equations. J. Comput. Appl. Math. 190 (2006) 127–135. | DOI | Zbl
,Tatsien Li, Controllability and Observability for Quasilinear Hyperbolic Systems. Vol. 3 of AIMS Series on Applied Mathematics. AIMS & Higher Education Press (2010). | Zbl
Semi-global
Local exact boundary controllability for a class of quasilinear hyperbolic systems. Chin. Ann. Math. 23 (2002) 209–218. | DOI | Zbl
, ,Exact boundary controllability for quasilinear hyperbolic systems. SIAM J. Control. Optim. 41 (2003) 1748–1755. | DOI | MR | Zbl
, ,Strong (weak) exact controllability and strong (weak) exact observability for quasilinear hyperbolic systems. Chin. Ann. Math. 31 (2010) 723–742. | DOI | MR | Zbl
, ,Exact synchronization for a coupled system of wave equations with Dirichlet boundary controls. Chin. Ann. Math. 34 (2013) 139–160. | DOI | MR | Zbl
, ,Tatsien. Li, Wenci. Yu, Boundary Value Problems for Quasilinear Hyperbolic systems. Duke University Mathematics Series V (1985). | MR | Zbl
Exact boundary controllability for 1-D quasilinear wave equations. SIAM J. Control. Optim. 45 (2006) 1074–1083. | DOI | MR | Zbl
, ,Exact boundary synchronization for a coupled system of 1-D wave equations. ESAIM: COCV 20 (2014) 339–361. | Numdam | MR | Zbl
, , ,J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilization de Systèmes Distribués. Vol. I. Masson (1988). | MR | Zbl
Exact controllability, stabilization and perturbations for distributed systems. SIAM Rev. 30 (1988) 1–68. | DOI | MR | Zbl
,Synchronization in chaotic systems. Phys. Rev. Lett. 64 (1990) 821–824. | DOI | Zbl
, ,S. Strogatz, SYNC: The Emerging Science of Spontaneous Order. THEIA, New York (2003).
Exact controllability for nonautonomous quasilinear hyperbolic systems. Chin. Ann. Math. 27 (2006) 643–656. | DOI | Zbl
,Exact boundary controllability for nonautonomous quasilinear wave equations. Math. Methods Appl. Sci. 30 (2007) 1311–1327. | DOI | Zbl
,Chai Wah Wu, Synchronizaton in complex networks of nonlinear dynamical systems. World scientific (2007). | Zbl
- Approximate boundary synchronization by groups for a coupled system of wave equations with coupled Robin boundary conditions, European Series in Applied and Industrial Mathematics (ESAIM): Control, Optimization and Calculus of Variations, Volume 27 (2021), p. 30 (Id/No 10) | DOI:10.1051/cocv/2021006 | Zbl:1467.93041
- Local exact boundary synchronization for a kind of first order quasilinear hyperbolic systems, Chinese Annals of Mathematics. Series B, Volume 40 (2019) no. 1, pp. 79-96 | DOI:10.1007/s11401-018-0119-z | Zbl:1437.35460
Cité par 2 documents. Sources : zbMATH