We generalize to the p-Laplacian Δp a spectral inequality proved by M.-T. Kohler-Jobin. As a particular case of such a generalization, we obtain a sharp lower bound on the first Dirichlet eigenvalue of Δp of a set in terms of its p-torsional rigidity. The result is valid in every space dimension, for every 1 < p < ∞ and for every open set with finite measure. Moreover, it holds by replacing the first eigenvalue with more general optimal Poincaré-Sobolev constants. The method of proof is based on a generalization of the rearrangement technique introduced by Kohler-Jobin.
Mots clés : torsional rigidity, nonlinear eigenvalue problems, spherical rearrangements
@article{COCV_2014__20_2_315_0, author = {Brasco, Lorenzo}, title = {On torsional rigidity and principal frequencies: an invitation to the {Kohler-Jobin} rearrangement technique}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {315--338}, publisher = {EDP-Sciences}, volume = {20}, number = {2}, year = {2014}, doi = {10.1051/cocv/2013065}, mrnumber = {3264206}, zbl = {1290.35160}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2013065/} }
TY - JOUR AU - Brasco, Lorenzo TI - On torsional rigidity and principal frequencies: an invitation to the Kohler-Jobin rearrangement technique JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2014 SP - 315 EP - 338 VL - 20 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2013065/ DO - 10.1051/cocv/2013065 LA - en ID - COCV_2014__20_2_315_0 ER -
%0 Journal Article %A Brasco, Lorenzo %T On torsional rigidity and principal frequencies: an invitation to the Kohler-Jobin rearrangement technique %J ESAIM: Control, Optimisation and Calculus of Variations %D 2014 %P 315-338 %V 20 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2013065/ %R 10.1051/cocv/2013065 %G en %F COCV_2014__20_2_315_0
Brasco, Lorenzo. On torsional rigidity and principal frequencies: an invitation to the Kohler-Jobin rearrangement technique. ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 2, pp. 315-338. doi : 10.1051/cocv/2013065. http://www.numdam.org/articles/10.1051/cocv/2013065/
[1] Topics on Analysis in Metric Spaces, vol. 25 of Oxford Lect. Series Math. Appl. Oxford University Press, Oxford (2004). | MR | Zbl
and ,[2] Convex symmetrization and applications. Ann. Institut Henri Poincaré Anal. Non Linéaire 14 (1997) 275-293. | Numdam | MR | Zbl
, , and ,[3] The pseudo p-Laplace eigenvalue problem and viscosity solution as p → ∞. ESAIM: COCV 10 (2004) 28-52. | Numdam | MR | Zbl
and ,[4] Faber-Krahn inequalities in sharp quantitative form, preprint (2013), available at http://cvgmt.sns.it/paper/2161/
, and ,[5] Variational Methods in Shape Optimization Problems, vol. 65 of Progress Nonlinear Differ. Eqs. Birkhäuser Verlag, Basel (2005). | MR | Zbl
and ,[6] Interpolating between torsional rigidity and principal frequency. J. Math. Anal. Appl. 379 (2011) 818-826. | MR | Zbl
and ,[7] C1 + α local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7 (1983) 827-850. | MR | Zbl
,[8] Convexity methods in Hamiltonian mechanics. Springer-Verlag (1990). | MR | Zbl
,[9] Convex symmetrization and Pólya-Szegő inequality. Nonlinear Anal. 56 (2004) 43-62. | MR | Zbl
and ,[10] Convex rearrangement: equality cases in the Pólya-Szegő inequality, Calc. Var. Partial Differ. Eqs. 21 (2004) 259-272. | MR | Zbl
and ,[11] A mass transportation approach to quantitative isoperimetric inequalities. Invent. Math. 81 (2010) 167-211. | MR | Zbl
, and ,[12] Extremal functions for the Moser-Trudinger inequality in two dimensions. Comment. Math. Helv. 67 (1992) 471-497. | MR | Zbl
,[13] Sharp bounds for the p-torsion of convex planar domains, in Geometric Properties for Parabolic and Elliptic PDE's, vol. 2 of Springer INdAM Series (2013) 97-115. | MR | Zbl
, and ,[14] Existence and uniqueness for a p-Laplacian nonlinear eigenvalue problem. Electron. J. Differ. Eqs. (2010) 10. | MR | Zbl
, ,[15] Stability estimates for certain Faber-Krahn, isocapacitary and Cheeger inequalities. Ann. Sci. Norm. Super. Pisa Cl. Sci. 8 (2009) 51-71. | Numdam | MR | Zbl
, and ,[16] Extremum problems for eigenvalues of elliptic operators, Frontiers in Mathematics. Birkhäuser Verlag, Basel (2006). | MR | Zbl
,[17] Symmetrization and applications, in vol. 3 of Series in Analysis. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2006). | MR | Zbl
,[18] Symmetrization with equal Dirichlet integrals. SIAM J. Math. Anal. 13 (1982), 153-161. | MR | Zbl
,[19] Une méthode de comparaison isopérimétrique de fonctionnelles de domaines de la physique mathématique | MR | Zbl
,[20] Démonstration de l'inégalité isopérimétrique | MR | Zbl
,[21] Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Analysis. Theory, Methods & Appl. 12 (1988) 1203-1219. | MR | Zbl
,[22] Extremal functions for Moser's inequality. Trans. Amer. Math. Soc. 348 (1996) 2663-2671. | MR | Zbl
,[23] A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20 (1970/71) 1077-1092. | Zbl
,[24] Isoperimetric inequalities in mathematical physics, in vol. 27 of Ann. Math. Studies. Princeton University Press, Princeton, N. J. (1951). | Zbl
, ,[25] Convex bodies: the Brunn-Minkowski theory. Cambridge University Press (1993). | MR | Zbl
,[26] Elliptic equations and rearrangements. Ann. Scuola Norm. Sup. Pisa 3 (1976) 697-718. | Numdam | MR | Zbl
,[27] On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17 (1967), 473-483. | MR | Zbl
,Cité par Sources :