The first eigenvalue of the -Laplacian on an open set of given measure attains its minimum value if and only if the set is a ball. We provide a quantitative version of this statement by an argument that can be easily adapted to treat also certain isocapacitary and Cheeger inequalities.
@article{ASNSP_2009_5_8_1_51_0, author = {Fusco, Nicola and Maggi, Francesco and Pratelli, Aldo}, title = {Stability estimates for certain {Faber-Krahn,} isocapacitary and {Cheeger} inequalities}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {51--71}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 8}, number = {1}, year = {2009}, mrnumber = {2512200}, zbl = {1176.49047}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2009_5_8_1_51_0/} }
TY - JOUR AU - Fusco, Nicola AU - Maggi, Francesco AU - Pratelli, Aldo TI - Stability estimates for certain Faber-Krahn, isocapacitary and Cheeger inequalities JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2009 SP - 51 EP - 71 VL - 8 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2009_5_8_1_51_0/ LA - en ID - ASNSP_2009_5_8_1_51_0 ER -
%0 Journal Article %A Fusco, Nicola %A Maggi, Francesco %A Pratelli, Aldo %T Stability estimates for certain Faber-Krahn, isocapacitary and Cheeger inequalities %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2009 %P 51-71 %V 8 %N 1 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2009_5_8_1_51_0/ %G en %F ASNSP_2009_5_8_1_51_0
Fusco, Nicola; Maggi, Francesco; Pratelli, Aldo. Stability estimates for certain Faber-Krahn, isocapacitary and Cheeger inequalities. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 8 (2009) no. 1, pp. 51-71. http://www.numdam.org/item/ASNSP_2009_5_8_1_51_0/
[1] A characterization of convex calibrable sets in , Math. Ann. 332 (2005), 329–366. | MR | Zbl
, and ,[2] A direct uniqueness proof for equations involving the -Laplace operator, Manuscripta Math. 109 (2002), 229–231. | MR | Zbl
and ,[3] Some observations on the first eigenvalue of the -Laplacian and its connections with asymmetry, Electron. J. Differential Equations 35 (2001), 15 pp. | EuDML | MR | Zbl
,[4] Bounds for capacities in terms of asymmetry, Rev. Mat. Iberoamericana 12 (1996), 593–639. | EuDML | MR | Zbl
and ,[5] Minimal rearrangements of Sobolev functions, J. Reine Angew. Math. 384 (1988), 153–179. | EuDML | MR | Zbl
and ,[6] On the selection of maximal Cheeger sets, Differential Integral Equations 20 (2007) 991–1004. | MR | Zbl
, and ,[7] On a weighted total variation minimization problem, J. Funct. Anal. 250 (2007), 214–226. | MR | Zbl
and ,[8] Uniqueness of the Cheeger set of a convex body, Pacific J. Math. 232 (2007), 77–90. | MR | Zbl
, and ,[9] Functions of bounded variation and rearrangements, Arch. Ration. Mech. Anal. 165 (2002), 1–40. | MR | Zbl
and ,[10] “Measure Theory and Fine Properties of Functions”, Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992. | MR | Zbl
and ,[11] Beweis dass unter allen homogen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt, Sitzungsber. Bayer. Akad. der Wiss. Math.-Phys., Munich (1923), 169–172. | JFM
,[12] An integral formula for total gradient variation, Arch. Math. (Basel) 11 (1960), 218–222. | MR | Zbl
and ,[13] Isoperimetric estimates for the first eigenvalue of the -Laplace operator and the Cheeger constant, Comment. Math. Univ. Carolin. 44 (2003), 659–667. | EuDML | MR | Zbl
and ,[14] Stability in the isoperimetric problem for convex or nearly spherical domains in , Trans. Amer. Math. Soc. 314 (1989), 619–638. | MR | Zbl
,[15] The quantitative sharp isoperimetric inequality, Ann. of Math. 168 (2008), 941–980. | MR | Zbl
, and ,[16] A quantitative isoperimetric inequality in -dimensional space, J. Reine Angew. Math. 428 (1992), 161–176. | EuDML | MR | Zbl
,[17] On asymmetry and capacity, J. Anal. Math. 56 (1991), 87–123. | MR | Zbl
, and ,[18] Isoperimetric inequalities in potential theory, In: “Proceedings from the International Conference on Potential Theory” (Amersfoort, 1991), Potential Anal. 3 (1994), 1–14. | MR | Zbl
and ,[19] Characterization of Cheeger sets for convex subsets of the plans, Pacific J. Math. 225 (2006), 103–118. | MR | Zbl
and ,[20] The Laplace eigenvalue problem as and Cheeger sets in a Finsler metric, J. Convex Anal. 15 (2008), 623–634. | MR | Zbl
and ,[21] Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises, Math. Ann. 94 (1925), 97–100. | EuDML | JFM | MR
,[22] Über Minimaleigenschaft des Kugel in drei und mehr Dimensionen, Acta Comment Univ. Tartu Math. (Dorpat) A9 (1926), 1–44. | JFM
,[23] “Analysis”, Second edition, Graduate Studies in Mathematics, Vol. 14, American Mathematical Society, Providence, RI, 2001. | MR
and ,[24] On the equation , Proc. Amer. Math. Soc. 109 (1990), 157–164. | MR | Zbl
,[25] The stability of some eigenvalue estimates, J. Differential Geom. 36 (1992), 19–33. | MR | Zbl
,[26] The isoperimetric inequality, Bull. Amer. Math. Soc. 84 (1978), 1182–1238. | MR | Zbl
,[27] Bonnesen-style isoperimetric inequalities, Amer. Math. Monthly 86 (1979), 1–29. | MR | Zbl
,[28] “Isoperimetric Inequalities in Mathematical Physics”, Annals of Mathematics Studies, Vol. 27, Princeton University Press, Princeton, NJ, 1951. | MR | Zbl
and ,[29] “The Theory of Sound”, MacMillan, New York, 1877, 1894; Dover, New York, 1945. | MR
(Lord Rayleigh),[30] Best constants in Sobolev inequality, Ann. Mat. Pura Appl. IV 110 (1976), 353–372. | MR | Zbl
,