We compute the Γ-limit of a sequence of non-local integral functionals depending on a regularization of the gradient term by means of a convolution kernel. In particular, as Γ-limit, we obtain free discontinuity functionals with linear growth and with anisotropic surface energy density.
Mots-clés : free discontinuities, Γ-convergence, anisotropy
@article{COCV_2013__19_2_486_0, author = {Lussardi, Luca and Magni, Annibale}, title = {$\Gamma $-limits of convolution functionals}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {486--515}, publisher = {EDP-Sciences}, volume = {19}, number = {2}, year = {2013}, doi = {10.1051/cocv/2012018}, zbl = {1263.49010}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2012018/} }
TY - JOUR AU - Lussardi, Luca AU - Magni, Annibale TI - $\Gamma $-limits of convolution functionals JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2013 SP - 486 EP - 515 VL - 19 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2012018/ DO - 10.1051/cocv/2012018 LA - en ID - COCV_2013__19_2_486_0 ER -
%0 Journal Article %A Lussardi, Luca %A Magni, Annibale %T $\Gamma $-limits of convolution functionals %J ESAIM: Control, Optimisation and Calculus of Variations %D 2013 %P 486-515 %V 19 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2012018/ %R 10.1051/cocv/2012018 %G en %F COCV_2013__19_2_486_0
Lussardi, Luca; Magni, Annibale. $\Gamma $-limits of convolution functionals. ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 2, pp. 486-515. doi : 10.1051/cocv/2012018. http://www.numdam.org/articles/10.1051/cocv/2012018/
[1] Free discontinuity problems generated by singular perturbation : the n-dimensional case. Proc. R. Soc. Edinb. Sect. A 130 (2000) 449-469. | MR | Zbl
and ,[2] Free-discontinuity problems generated by singular perturbation. Proc. R. Soc. Edinburgh Sect. A 6 (1998) 1115-1129. | MR | Zbl
, , and ,[3] Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Commut. Pure Appl. Math. XLIII (1990) 999-1036. | MR | Zbl
and ,[4] On the approximation of free discontinuity problems. Boll. Unione Mat. Ital. B (7) VI (1992) 105-123. | MR | Zbl
and ,[5] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press (2000). | MR | Zbl
[6] Relaxation results for some free discontinuity problems. J. Reine Angew. Math. 458 (1995) 1-18. | MR | Zbl
, and ,[7] Implementation of an adaptive finite-element approximation of the Mumford-Shah functional. Numer. Math. 85 (2000) 609-646. | MR | Zbl
and ,[8] Approximation of free-discontinuity problems. Lect. Notes Math. 1694 (1998). | MR | Zbl
,[9] A. Braides, Γ-convergence for beginners. Oxford University Press (2002). | MR | Zbl
[10] Non-local approximation of the Mumford-Shah functional. Calc. Var. 5 (1997) 293-322. | MR | Zbl
and ,[11] On the non-local approximation of free-discontinuity problems. Commut. Partial Differ. Equ. 23 (1998) 817-829. | MR | Zbl
and ,[12] Discrete approximation of the Mumford-Shah functional in dimension two. ESAIM : M2AN 33 (1999) 651-672. | Numdam | MR | Zbl
and ,[13] Sequence of non-local functionals which approximate free-discontinuity problems. Arch. R. Mech. Anal. 144 (1998) 357-402. | MR | Zbl
,[14] A finite element approximation of an image segmentation problem. Math. Models Methods Appl. Sci. 9 (1999) 243-259. | MR | Zbl
,[15] Finite element approximation of non-isotropic free-discontinuity problems. Numer. Funct. Anal. Optim. 18 (1997) 921-940. | MR | Zbl
and ,[16] Nonlocal approximation of nonisotropic free-discontinuity problems. SIAM J. Appl. Math. 59 (1999) 1507-1519. | MR | Zbl
and ,[17] A density result in SBV with respect to non-isotropic energies. Nonlinear Anal. 38 (1999) 585-604. | MR | Zbl
and ,[18] G. Dal Maso, An Introduction to Γ-Convergence. Birkhäuser, Boston (1993). | Zbl
[19] Free discontinuity problems in calculus of variations, in Frontiers in pure and applied mathematics, edited by R. Dautray. A collection of papers dedicated to Jacques-Louis Lions on the occasion of his sixtieth birthday, Paris 1988. North-Holland Publishing Co., Amsterdam (1991) 55-62. | MR | Zbl
,[20] An approximation result for free discontinuity functionals by means of non-local energies. Math. Methods Appl. Sci. 31 (2008) 2133-2146. | MR
,[21] Non local approximation of free-discontinuity functionals with linear growth : the one dimensional case. Ann. Mat. Pura Appl. 186 (2007) 722-744. | MR | Zbl
and ,[22] Non local approximation of free-discontinuity problems with linear growth. ESAIM : COCV 13 (2007) 135-162. | Numdam | MR | Zbl
and ,[23] Sequences of singularly perturbed functionals generating free-discontinuity problems. SIAM J. Math. Anal. 35 (2003) 759-805. | MR | Zbl
,[24] The anisotropy introduced by the mesh in the finite element approximation of the Mumford-Shah functional. Numer. Funct. Anal. Optim. 20 (1999) 957-982. | MR | Zbl
,[25] A non-local approximation of free discontinuity problems in SBV and SBD. Calc. Var. 25 (2006) 33-62. | MR | Zbl
,Cité par Sources :