Multiplicity of solutions for the noncooperative p-laplacian operator elliptic system with nonlinear boundary conditions
ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 4, pp. 930-940.

In this paper, we study the multiplicity of solutions for a class of noncooperative p-Laplacian operator elliptic system. Under suitable assumptions, we obtain a sequence of solutions by using the limit index theory.

DOI : 10.1051/cocv/2011189
Classification : 35J70, 35B20
Mots clés : p-laplacian operator, limit index, critical growth, concentration-compactness principle
@article{COCV_2012__18_4_930_0,
     author = {Liang, Sihua and Zhang, Jihui},
     title = {Multiplicity of solutions for the noncooperative $p$-laplacian operator elliptic system with nonlinear boundary conditions},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {930--940},
     publisher = {EDP-Sciences},
     volume = {18},
     number = {4},
     year = {2012},
     doi = {10.1051/cocv/2011189},
     zbl = {1276.35091},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2011189/}
}
TY  - JOUR
AU  - Liang, Sihua
AU  - Zhang, Jihui
TI  - Multiplicity of solutions for the noncooperative $p$-laplacian operator elliptic system with nonlinear boundary conditions
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2012
SP  - 930
EP  - 940
VL  - 18
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2011189/
DO  - 10.1051/cocv/2011189
LA  - en
ID  - COCV_2012__18_4_930_0
ER  - 
%0 Journal Article
%A Liang, Sihua
%A Zhang, Jihui
%T Multiplicity of solutions for the noncooperative $p$-laplacian operator elliptic system with nonlinear boundary conditions
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2012
%P 930-940
%V 18
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2011189/
%R 10.1051/cocv/2011189
%G en
%F COCV_2012__18_4_930_0
Liang, Sihua; Zhang, Jihui. Multiplicity of solutions for the noncooperative $p$-laplacian operator elliptic system with nonlinear boundary conditions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 4, pp. 930-940. doi : 10.1051/cocv/2011189. http://www.numdam.org/articles/10.1051/cocv/2011189/

[1] V. Benci, On critical point theory for indefinite functionals in presence of symmetries. Trans. Amer. Math. Soc. 274 (1982) 533-572. | MR | Zbl

[2] H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical exponents. Comm. Pure Appl. Math. 34 (1983) 437-477. | MR | Zbl

[3] M. Chipot, I. Shafrir and M. Fila, On the solutions to some elliptic equations with nonlinear boundary conditions. Advances Differential Equations 1 (1996) 91-110. | MR | Zbl

[4] J. Fernández Bonder and J.D. Rossi, Existence results for the p-Laplacian with nonlinear boundary conditions. J. Math. Anal. Appl. 263 (2001) 195-223. | MR | Zbl

[5] J. Fernández Bonder, J.P. Pinasco and J.D. Rossi, Existence results for a Hamiltonian elliptic system with nonlinear boundary conditions. Electron. J. Differential Equations 1999 (1999) 1-15. | MR | Zbl

[6] D.W. Huang and Y.Q. Li, Multiplicity of solutions for a noncooperative p-Laplacian elliptic system in RN. J. Differential Equations 215 (2005) 206-223. | MR | Zbl

[7] W. Krawcewicz and W. Marzantowicz, Some remarks on the Lusternik-Schnirelman method for non-differentiable functionals invariant with respect to a finite group action. Rocky Mt. J. Math. 20 (1990) 1041-1049. | MR | Zbl

[8] Y.Q. Li, A limit index theory and its application. Nonlinear Anal. 25 (1995) 1371-1389. | MR | Zbl

[9] F. Lin and Y.Q. Li, Multiplicity of solutions for a noncooperative elliptic system with critical Sobolev exponent. Z. Angew. Math. Phys. 60 (2009) 402-415. | MR | Zbl

[10] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I. Springer, Berlin (1977). | MR | Zbl

[11] P.L. Lions, The concentration-compactness principle in the caculus of variation : the limit case, I. Rev. Mat. Ibero. 1 (1985) 45-120. | Zbl

[12] P.L. Lions, The concentration-compactness principle in the caculus of variation : the limit case, II. Rev. Mat. Ibero. 1 (1985) 145-201. | MR | Zbl

[13] K. Pflüger, Existence and multiplicity of solutions to a p-Laplacian equation with nonlinear boundary condition, Electron. J. Differential Equations 10 (1998) 1-13. | MR | Zbl

[14] S. Terraccini, Symmetry properties of positive solutions to some elliptic equations with nonlinear boundary conditions. Differential Integral Equations 8 (1995) 1911-1922. | MR | Zbl

[15] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators. North- Holland, Amsterdam (1978). | MR | Zbl

[16] M. Willem, Minimax Theorems. Birkhäuser, Boston (1996). | MR | Zbl

Cité par Sources :