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Abstract. In this paper, we study the multiplicity of solutions for a class of noncooperative p-Laplacian
operator elliptic system. Under suitable assumptions, we obtain a sequence of solutions by using the
limit index theory.
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1. Introduction

In this paper we deal with the existence and multiplicity of solutions to the following p-Laplacian operator
elliptic system with nonlinear boundary conditions.⎧⎪⎪⎨⎪⎪⎩

Δpu − |u|p−2u = Fu(x, u, v), in Ω,

−Δpv + |v|p−2v = Fv(x, u, v), in Ω,

|∇u|p−2 ∂u
∂ν = |u|p∗−2u, |∇v|p−2 ∂v

∂ν = |v|p∗−2v, on ∂Ω,

(1.1)

where 1 < p < N , Ω ⊂ R
N (N ≥ 3) is a bounded domain with smooth boundary, Δpu := div(|∇u|p−2∇u) is a

p-Laplacian operator and ∂
∂ν is the outer normal derivative, F = F (x, u, v), Fu = ∂F

∂u , Fv = ∂F
∂v , p∗ = Np/(N−p)

is the critical exponent according to the Sobolev embedding.
In recent years, the existence and multiplicity of solutions for a noncooperative elliptic system have been

obtained by many papers. In [1], Benci assumed X is a Hilbert space, f satisfies (PS)-condition and is the form

f(u) =
1
2
〈Lu, u〉+ Φ(u),

where L is bounded self-adjoint operator and Φ′ is compact.
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When p = 2 (a constant) with Dirichlet boundary condition, Lin and Li [9] considered the following system⎧⎪⎪⎨⎪⎪⎩
Δu = |u|2∗−2u + Fu(x, u, v), in Ω,

−Δv = |v|2∗−2v + Fv(x, u, v), in Ω,

u = 0, v = 0, on ∂Ω,

by applying the Limit Index Theory, they obtained the existence of multiple solutions under some assumptions
on nonlinear part.

When p �= 2, Huang and Li [6] considered the following the system of elliptic equations involving the
p-Laplacian in the unbounded domain of R

N by applying the Limit Index Theory,⎧⎪⎪⎨⎪⎪⎩
Δpu − |u|p−2u = Fu(x, u, v), in R

N ,

−Δpv + |v|p−2v = Fv(x, u, v), in R
N ,

u, v ∈ W 1,p(RN ),

where 1 < p < N and they extended some results of [8].
We note that these papers deal with Dirichlet boundary condition [2,7]. However, nonlinear boundary condi-

tions have only been considered in recent years. For the Laplace operator with nonlinear boundary conditions
see for example [3, 14]. For elliptic systems with nonlinear boundary conditions see [5]. For previous work for
the p-Laplacian with nonlinear boundary conditions of different type see [4, 13].

Motivated by papers above, a natural question arises whether the existence and multiplicity of solutions
to the p-Laplacian operator elliptic system with nonlinear boundary conditions (1.1) can be obtained. In this
paper we deal with the problem (1.1). Throughout this paper, we assume that F (x, u, v) satisfies the following
conditions:

(H1) F ∈ C(Ω × R2, R+) and F (x, s, t) = F (x,−s,−t) for all (x, s, t) ∈ Ω× ∈ R
2;

(H2) lim|t|→∞
Ft(x,s,t)
|t|p−1 = 0 uniformly for x ∈ Ω;

(H3) sFs(x, s, t) ≥ 0 for all (x, s, t) ∈ Ω × R2.

Under assumptions (H1) and (H2), we have

Fv(x, u, v)v = o (|v|p) ,

which means that, for all ε > 0, there exist a(ε), b(ε) > 0 such that

|F (x, 0, v)v| ≤ a(ε) + ε|v|p (1.2)

and
|Fv(x, u, v)v| ≤ b(ε) + ε|v|p. (1.3)

Hence, together with condition (1.2), (1.3) and the mean value theorem for any constants β and fixed u we have

|F (x, u, v) − βFv(x, u, v)v| ≤ c(ε) + ε|v|p, (1.4)

for some c(ε) > 0.
Furthermore, we assume that F (x, u, v) satisfies condition:

(H4) There exist L > 0 (where L will be determined later) and

ξ < |Ω|−1 min
{

0,
1
N

Sp∗/(p∗−p) − c

(
1

2N

)
|Ω|
}

such that F (x, s, t)t ≥ L|t|p − ξ, for every (x, s, t) ∈ Ω × R
2.
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Notation. Weak (resp. strong) convergence is denoted by ⇀ (resp., →). | · |p is the usual norm in Lp(Ω).
Lp

2(Ω) = Lp(Ω) × Lp(Ω) with the norm |(u, v)|p := (|u|pp + |v|pp)
1
p . E := W 1,p(Ω) with the norm ‖u‖p :=∫

Ω
(|∇u|p + |u|p)dx. Y = E ×E, Xn = E ×En. ci denote a positive constant and can be determined in concrete

conditions.
According to [15], there exists a Schauder basis {en}∞n=1 for E. Furthermore, since E is reflexive, {e∗n}∞n=1

the biorthogonal functionals associated to the basis {en}∞n=1 which are characterized by the relations

e∗n(em) = δn,m =
{

1, if n = m,
0, if n �= m,

form a basis for E∗ with the following properties (cf. [10] Prop. 1.b.1 and Thm. 1.b.5). Denote

En = span{e1, . . . , en}, E⊥
n = span{en+1, . . .}

and
E∗

n = span{e∗1, . . . , e∗n}.
Let Pn : E → En be the projector corresponding to decomposition E = En ⊕ E⊥

n and P ∗
n : E∗ → E∗

n be the
projector corresponding to the decomposition E∗ = E∗

n ⊕ (E∗
n)⊥. Then Pnu → u, P ∗

nv∗ → v∗ for any u ∈ E,
v∗ ∈ E∗ as n → ∞ and 〈P ∗

nv∗, u〉 = 〈v∗, Pnu〉. Let τ : E → E∗ be the mapping given by

〈τu, ũ〉 =
∫

Ω

|∇u|p−2∇u · ∇ũdx, for all u, ũ ∈ E.

It is easy to check that the operator τ is bounded, continuous. And if un → ũ in E and 〈τun − τũ, un − ũ〉 → 0,
then un → ũ in E (see [6, 8])

The energy functional corresponding to problem (1.1) is defined as follows,

J(u, v) = −1
p

∫
Ω

(|∇u|p + |u|p)dx +
1
p

∫
Ω

(|∇v|p + |v|p)dx

− 1
p∗

∫
∂Ω

|u|p∗
dσ − 1

p∗

∫
∂Ω

|v|p∗
dσ −

∫
Ω

F (x, u, v)dx. (1.5)

The main result of this paper is as follows.

Theorem 1.1. Suppose that F (x, u, v) satisfies conditions (H1)–(H4). Then there exists k0 > 1 such that (1.1)
possesses at least k0 − 1 pairs weak nontrivial solutions.

Remark 1.2. There are two difficulties in considering the elliptic problem (1.1). One is the functional J(u, v) is
strongly indefinite. Therefore one cannot apply the symmetric Mountain pass theorem of the functional J(u, v).
The other one in solving the problem is a lack of compactness which can be illustrated by the fact that the
embedding of W 1,p(Ω) into Lp∗

(∂Ω) is no longer compact.

Remark 1.3. Theorem 1.1 is new as far as we know. We mainly follow the way in [8] to prove our main result.

2. Preliminaries and lemmas

First of all, we recall the limit index theory due to Li [8]. In order to do that, we introduce the following
definitions.

Definition 2.1. [8, 16] The action of a topological group G on a normed space Z is a continuous map

G × Z → Z : [g, z] �→ gz
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such that
1 · z = z, (gh)z = g(hz) z �→ gz is linear, ∀ g, h ∈ G.

The action is isometric if
‖gz‖ = ‖z‖, ∀ g ∈ G, z ∈ Z.

And in this case Z is called G-space.
The set of invariant points is defined by

FixG := {z ∈ Z : gz = z, ∀ g ∈ G} .

A set A ⊂ Z is invariant if gA = A for every g ∈ G. A function ϕ : Z → R is invariant ϕ ◦ g = ϕ for every
g ∈ G, z ∈ Z. A map f : Z → Z is equivariant if g ◦ f = f ◦ g for every g ∈ G.

Suppose Z is a G-Banach space, that is, there is a G isometric action on Z. Let

Σ := {A ⊂ Z : A is closed and gA = A, ∀ g ∈ G}
be a family of all G-invariant closed subset of Z, and let

Γ :=
{
h ∈ C0(Z, Z) : h(gu) = g(hu), ∀ g ∈ G

}
be the class of all G-equivariant mapping of Z. Finally, we call the set

O(u) := {gu : g ∈ G}
G-orbit of u.

Definition 2.2. [8] An index for (G, Σ, Γ ) is a mapping i : Σ → Z+ ∪ {+∞} (where Z+ is the set of all
nonnegative integers) such that for all A, B ∈ Σ, h ∈ Γ , the following conditions are satisfied:

(1) i(A) = 0 ⇔ A = ∅;
(2) (monotonicity) A ⊂ B ⇒ i(A) ≤ i(B);

(3) (subadditivity) i(A ∪ B) ≤ i(A) + i(B);

(4) (supervariance) i(A) ≤ i(h(A)), ∀ h ∈ Γ ;

(5) (continuity) If A is compact and A ∩ FixG = ∅, then i(A) < +∞ and there is a G-invariant neighbourhood
N of A such that i(N) = i(A);

(6) (normalization) If x �∈ FixG, then i(O(x)) = 1.

Definition 2.3. [1] An index theory is said to satisfy the d-dimension property if there is a positive integer d
such that

i(V dk ∩ S1) = k

for all dk-dimensional subspaces V dk ∈ Σ such that V dk ∩ FixG = {0}, where S1 is the unit sphere in Z.

Suppose U and V are G-invariant closed subspaces of Z such that

Z = U ⊕ V,

where V is infinite dimensional and

V =
∞⋃

j=1

Vj ,
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where Vj is a dnj-dimensional G-invariant subspace of V , j = 1, 2, . . . , and V1 ⊂ V2 ⊂ . . . ⊂ Vn ⊂ . . . Let

Zj = U
⊕

Vj ,

and ∀ A ∈ Σ, let
Aj = A

⊕
Zj.

Definition 2.4. [8] Let i be an index theory satisfying the d-dimension property. A limit index with respect
to (Zj) induced by i is a mapping

i∞ : Σ → Z ∪ {−∞, +∞}
given by

i∞(A) = lim sup
j→∞

(i(Aj) − nj).

Proposition 2.5. [8] Let A, B ∈ Σ. Then i∞ satisfies:
(1) A = ∅ ⇒ i∞ = −∞;
(2) (monotonicity) A ⊂ B ⇒ i∞(A) ≤ i∞(B);
(3) (subadditivity) i∞(A ∪ B) ≤ i∞(A) + i∞(B);
(4) If V ∩ FixG = {0}, then i∞(Sρ ∩ V ) = 0, where Sρ = {z ∈ Z : ‖z‖ = ρ};
(5) If Y0 and Ỹ0 are G-invariant closed subspaces of V such that V = Y0 ⊕ Ỹ0, Ỹ0 ⊂ Vj0 for some j0 and
dimỸ0 = dm, then i∞(Sρ ∩ Y0) ≥ −m.

Definition 2.6. [16] A functional J ∈ C1(Z, R) is said to satisfy the condition (PS)∗c if any sequence {unk
},

unk
∈ Znk

such that
J(unk

) → c, dJnk
(unk) → 0, as k → ∞

possesses a convergent subsequence, where Znk
is the nk-dimension subspace of Z, Jnk

= J |Znk
.

Theorem 2.7. [8] Assume that

(B1) J ∈ C1(Z, R) is G-invariant;
(B2) there are G-invariant closed subspaces U and V such that V is infinite dimensional and Z = U ⊕ V ;
(B3) there is a sequence of G-invariant finite dimensional subspaces

V1 ⊂ V2 ⊂ · · · ⊂ Vj ⊂ · · · , dimVj = dnj ,

such that V = ∪∞
j=1Vj ;

(B4) there is an index theory i on Z satisfying the d-dimension property;
(B5) there are G-invariant subspaces Y0, Ỹ0, Y1 of V such that V = Y0 ⊕ Ỹ0, Y1, Ỹ0 ⊂ Vj0 for some j0 and

dimỸ0 = dm < dk = dimY1;
(B6) there are α and β, α < β such that f satisfies (PS)∗c , ∀ c ∈ [α, β];
(B7) ⎧⎨⎩ (a) either FixG ⊂ U ⊕ Y1, or FixG ∩ V = {0},

(b) there is ρ > 0 such that ∀ u ∈ Y0 ∩ Sρ, f(z) ≥ α,
(c) ∀ z ∈ U ⊕ Y1, f(z) ≤ β,

if i∞ is the limit index corresponding to i, then the numbers

cj = inf
i∞(A)≥j

sup
z∈A

f(u), −k + 1 ≤ j ≤ −m,

are critical values of f , and α ≤ c−k+1 ≤ · · · ≤ c−m ≤ β. Moreover, if c = cl = · · · = cl+r, r ≥ 0, then
i(Kc) ≥ r + 1, where Kc = {z ∈ Z : df(z) = 0, f(z) = c}.
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3. Local Palais-Smale condition

To prove Theorem 1.1, noting the lack of compactness, in the inclusion W 1,p(Ω) ↪→ Lp∗
(∂Ω), we can no

longer expect the Palais-Smale condition to hold. Anyway we can prove a local Palais-Smale condition that will
hold for J(u, v) below a certain value of energy. Let un be a bounded sequence in W 1,p(Ω) then there exists a
subsequence that we still denote un such that

un ⇀ u weakly in W 1,p(Ω),
un → u strongly in Lr(Ω), 1 ≤ r < p∗,

|∇un|p ⇀ dμ, |un|∂Ω|p∗
⇀ dη,

weakly-∗ in the sense of measures. Observe that dη is a measure supported on ∂Ω.
If we consider φ ∈ C∞(Ω), from the Sobolev trace inequality we obtain, passing to the limit(∫

∂Ω

|φ|p∗
dη

) 1
p∗

S
1
p ≤

(∫
Ω

|φ|pdμ +
∫

Ω

|u|p|∇φ|pdx +
∫

Ω

|φu|pdx

) 1
p

, (3.1)

where S is the best constant in the Sobolev trace embedding theorem. From (3.1) we observe that if u = 0 we
get a reverse Hölder-type inequality (but it involves one integral over Ω) between the two measures μ and η.

Similar to the proof of [11, 12], we have the following lemma.

Lemma 3.1. [4] Let uj be a weakly convergent sequence in W 1,p(Ω) with weak limit u such that

|∇uj |p ⇀ dμ, and |uj |∂Ω|p∗
⇀ dη,

weakly-∗ in the sense of measures. Then there exists x1, . . . , xl ∈ ∂Ω such that

(i) dη = |u|p∗
+
∑l

j=1 ηjδxj , ηj > 0;

(ii) dμ ≥ |∇u|p +
∑l

j=1 μjδxj , μj > 0;

(iii) (ηj)
p

p∗ ≤ μj

S .

Similar to [6, 16], it is easy to obtain the following lemma:

Lemma 3.2. Assume 1 ≤ θ1, θ2, θ < ∞, I ∈ C(Ω × R2, R) and

I(x, u, v) ≤ C
(
|u| θ1

θ + |v| θ2
θ

)
.

Then for every (u, v) ∈ Lθ1(Ω) × Lθ2(Ω), I(·, u, v) ∈ Lθ(Ω) and the operator

T : (u, v) �→ I(x, u, v)

is a continuous map from Lθ1(Ω) × Lθ2(Ω) to Lθ(Ω).

Lemma 3.3. Suppose that F (x, u, v) satisfies conditions (H1)–(H3). Then

(i) J ∈ C1(X, R);

(ii)

〈dJ(u, v), (û, v̂)〉 = −
∫

Ω

|∇u|p−2∇u · ∇û + |u|p−2uûdx −
∫

∂Ω

|u|p∗−2uûdσ

+
∫

Ω

|∇v|p−2∇v · ∇v̂+ � |v|p−2vv̂dx −
∫

∂Ω

|v|p∗−2vv̂dσ

−
∫

Ω

Fu(x, u, v)ûdx −
∫

Ω

Fv(x, u, v)v̂dx;

(iii) A critical point of J is a weak solution of system (1.1).
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Now set
X = U ⊕ V, U = E × {0}, V = {0} × E,

Y0 = {0} × E⊥
1 , V = Y0 ⊕ Ỹ0,

Y1 = {0} × Ek0 , Ek0 = span{e1, . . . , ek0},
then dim Ỹ0 = 1, dimY1 = k0.

Define a group action G2 = {1, τ} ∼= Z2 by setting τ(u, v) = (−u,−v), then FixG = {0} × {0} (also denote
{0}). It is clear that U and V are G-invariant closed subspaces of X , and Y0, Ỹ0 and Y1 are G-invariant subspace
of V . Set

Σ := {A ⊂ X \ {0} : A is closed in X and (u, v) ∈ A ⇒ (−u,−v) ∈ A} .

Define an index γ on Σ by:

γ(A) =

⎧⎨⎩min{N ∈ Z : ∃ h ∈ C(A, RN\{0} such that h(−u,−v) = h(u, v))},
0, if A = ∅,
+∞, if such h does not exist.

Then we have the following proposition from [6]: γ is an index satisfying the properties given in Definition 2.2.
Moreover, γ satisfies the one-dimension property. According to Definition 2.4 we can obtain a limit index γ∞

with respect to (Xn) from γ.
Now we turn to prove local Palais-Smale condition.

Lemma 3.4. Assume condition (H1)–(H3) hold, Then the functional J satisfies the local (PS)c condition in

c ∈
(
−∞,

1
N

Sp∗/(p∗−p) − c

(
1

2N

)
|Ω|
)

,

in the following sense: if

J(unk
, vnk

) → c ∈
(
−∞,

1
N

Sp∗/(p∗−p) − c

(
1

2N

)
|Ω|
)

, dJnk
(unk

, vnk
) → 0, as k → ∞,

where Jnk
= J |Xnk

. Then {(unk
, vnk

)} contains a subsequence converging strongly in X.

Proof. First, we show that {(unk
, vnk

)} is bounded in X .
We note that by condition (H3),

o(1)‖unk
‖p ≥ 〈−dJnk

(unk
, vnk

), (unk
, 0)〉

=
∫

Ω

|∇unk
|p + |unk

|pdx +
∫

∂Ω

|unk
|p∗

dσ +
∫

Ω

Fu(x, unk
, vnk

)unk
dx

≥
∫

Ω

|∇unk
|p + |unk

|pdx +
∫

∂Ω

|unk
|p∗

dx

≥ ‖unk
‖p

p, (3.2)

since p > 1, from (3.2), we know that ‖unk
‖p is bounded. On the one hand, we have

Jnk
(0, vnk

) − 1
p∗

〈dJnk
(unk

, vnk
), (0, vnk

)〉

=
(

1
p
− 1

p∗

)∫
Ω

(|∇vnk
|p + |vnk

|p) dx −
∫

Ω

[
F (x, unk

, vnk
) − 1

p∗
Fv(x, unk

, vnk
)vnk

]
dx

= c + o(1)‖vn‖p,
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i.e.

1
N

∫
Ω

(|∇vnk
|p + |vnk

|p) dx =
∫

Ω

[
F (x, unk

, vnk
) − 1

p∗
Fv(x, unk

, vnk
)vnk

]
dx

+ c + o(1)‖vnk
‖p.

Then by (1.4), we have (
1
N

− ε

)
‖vnk

‖p
p ≤ c(ε)|Ω| + c + o(1)‖vnk

‖p,

where | · | denote by Lebesgue measure. Setting ε = 1/2N , we get

‖vnk
‖p

p ≤ M + o(1)‖vnk
‖p, (3.3)

where o(1) → 0 and M is a some positive number. Thus (3.3) implies that {vnk
} is bounded in W 1,p(Ω). This

implies ‖unk
‖p + ‖vnk

‖p is bounded in X .
Next, we prove that {(unk

, vnk
)} contains a subsequence converging strongly in X .

We note that {unk
} is bounded in E. Hence, up to a subsequence, unk

⇀ u weakly in E and unk
(x) → u(x),

a.e. in R
N . We claim that unk

→ u strongly in E. In fact, note that∫
Ω

|∇unk
−∇u|p + |unk

− u|pdx +
∫

∂Ω

|unk
− u|p∗

dσ +
∫

Ω

Fu(x, unk
− u, vnk

)(unk
− u)dx

= 〈−dJnk
(unk

− u, vnk
), (unk

− u, 0)〉 → 0 as n → ∞,

and condition (H3) imply that

unk
→ u strongly in E. (3.4)

In the following we will prove that there exists v ∈ E such that

vnk
→ v strongly in E. (3.5)

By Lemma 3.1 and (3.3) there exists a subsequence, there exists a subsequence, that we still denote vnk
such

that

vnk
⇀ v weakly in W 1,p(Ω),

vnk
→ v strongly in Lr(Ω), 1 ≤ r < p∗, and a.e. in Ω

|∇vnk
|p ⇀ dμ ≥ |∇v|p +

l∑
k=1

μkδxk
,

|vnk
|∂Ω|p∗

⇀ dη = |v|∂Ω|p∗
+

l∑
k=1

ηkδxk
.

Let φ(x) ∈ C∞(Ω) such that φ(x) ≡ 1 in B(xk, ε), φ(x) ≡ 0 in Ω \ (xk, 2ε) and |∇φ| ≤ 2/ε, where xk belongs
to the support of dη. Consider Then {φvnk

} is bounded in E, Obviously, 〈dJnk
(unk

, vnk
), (0, vnk

φ)〉 → 0, i.e.

lim
n→∞

[∫
Ω

(|∇vnk
|p + |vnk

|p) φdx −
∫

∂Ω

|vnk
|p∗

φdσ −
∫

Ω

Fv(x, unk
, vnk

)vnk
φdx

]
= − lim

n→∞

∫
Ω

(
vnk

|∇vnk
|p−2∇vnk

∇φ
)
dx. (3.6)
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On the other hand, by Hölder inequality and weak convergence, we obtain

0 ≤ lim
ε→0

lim
n→∞

∣∣∣∣∫
Ω

vnk
|∇vnk

|p−2∇vnk
∇φdx

∣∣∣∣
≤ lim

ε→0
lim

n→∞

(∫
Ω

|vnk
|p|∇φ|pdx

) 1
p
(∫

Ω

|∇vnk
|qdx

) p−1
p

≤ C lim
ε→0

(∫
Ω

|v|p|∇φ|pdx

) 1
p

≤ C lim
ε→0

(∫
B(xj ,ε)

|∇φ|Ndx

) 1
N
(∫

B(xj,ε)

|v|p∗
dx

) 1
p∗

≤ C lim
ε→0

(∫
B(xj ,ε)

|v|p∗
dx

) 1
p∗

= 0. (3.7)

From (3.6) and (3.7), we have

0 = lim
ε→0

[∫
∂Ω

φdη −
∫

Ω

φdμ −
∫

Ω

|v|pφdx −
∫

Ω

Fv(x, u, v)vφdx

]
= ηk − μk. (3.8)

Combing this with Lemma 3.1, we obtain (μk)p/p∗
S ≤ μk. This result implies that

μk = 0 or μk ≥ Sp∗/(p∗−p).

If the second case μk ≥ Sp∗/(p∗−p) holds, for some k ∈ J , then by using Lemma 3.1 and the Hölder inequality,
we have that

c = lim
n→∞

(
Jnk

(0, vnk
) − 1

p∗
〈dJnk

(unk
, vnk

), (0, vnk
)〉
)

=
(

1
p
− 1

p∗

)∫
Ω

(|∇vnk
|p + |vnk

|p) dx −
∫

Ω

[
F (x, unk

, vnk
) − 1

p∗
Fv(x, unk

, vnk
)vnk

]
dx

≥ 1
N

∫
Ω

dμ − c

(
1

2N

)
|Ω|

≥ 1
N

∫
Ω

|∇vnk
|pdx +

1
N

Sp∗/(p∗−p) − c

(
1

2N

)
|Ω|

≥ 1
N

Sp∗/(p∗−p) − c

(
1

2N

)
|Ω|,

where ε = 1/2N . This is impossible. Consequently, μk = 0 for all k ∈ J . From (3.8) we know that ηk = 0 for all
k ∈ J and hence ∫

∂Ω

|vnk
|p∗

dσ →
∫

∂Ω

|v|p∗
dσ.

Now vnk
⇀ v in E and Brezis-Lieb lemma [2] implies that

lim
n→∞

∫
∂Ω

|vnk
− v|q∗

dσ = 0.
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Thus, we have

o(1)‖vnk
‖p = ‖vnk

‖p
p −

∫
Ω

|vnk
|p∗

dσ −
∫

Ω

Fv(x, unk
, vnk

)vnk
dx

= ‖vnk
− v‖p

p + ‖v‖p
p −

∫
Ω

|v|p∗
dσ −

∫
Ω

Fv(x, u, v)vdx

= ‖vnk
− v‖p

p + o(1)‖v‖p,

since dJnk
(0, v) = 0. Thus we prove that {vnk

} strongly converges to v in E. Thus (3.5) holds. (3.4) and (3.5)
imply the conclusion of Lemma 3.4 follows. �

4. Proof of Theorem 1.1

Proof of Theorem 1.1. Now we shall verify the conditions of Theorem 2.7. Obviously, (B1), (B2), (B4) in The-
orem 2.7 are satisfied. Set Vj = Ej = span{e1, e2, . . . , ej}, then (B3) is also satisfied. Since 1 = dim Ỹ0 < k0 =
dim Y1, (B5) is satisfied. In the following we verify the conditions in (B7). Since FixG ∩ V = 0, that is (a) of
(B7) holds. It remains to verify (b), (c) of (B7). Choose a number α such that

α < min
{

0,
1
N

Sp∗/(p∗−p) − c

(
1

2N

)
|Ω|, 1

N
2

p∗
p−p∗ S

pp∗
p−p∗ − b

(
1
2p

)
|Ω|
}

. (4.1)

(i) If (0, v) ∈ Y0 ∩ Sρ (where ρ is to be determined) then by (H2),

J(0, v) =
1
p

∫
Ω

|∇v|p + |v|pdx − 1
p∗

∫
∂Ω

|v|p∗
dσ −

∫
Ω

F (x, 0, v)dx

≥
(

1
p
− ε

)
·
∫

Ω

|∇v|p + |v|pdx − 1
p∗

∫
∂Ω

|v|p∗
dσ − b(ε)|Ω|

≥ 1
2p

‖v‖p
p −

1
p∗

Sp∗‖v‖p∗
p − b

(
1
2p

)
|Ω|, (4.2)

where ε = 1
2p . Since

max
t∈R

(
1
2p

tp − 1
p∗

Sp∗
tp

∗ − b

(
1
2p

)
|Ω|
)

=
1
N

2
p∗

p−p∗ S
pp∗

p−p∗ − b

(
1
2p

)
|Ω|,

Therefore, there exists ρ > 0 such that J(0, v) ≥ α for every ‖v‖p = ρ, that is (b) of (B7) holds.

(ii) For each (u, v) ∈ U ⊕ Y1, by condition (H4), we have

J(u, v) = −1
p

∫
Ω

(|∇u|p + |u|p)dx +
1
p

∫
Ω

(|∇v|p + |v|p)dx

− 1
p∗

∫
∂Ω

|u|p∗
dσ − 1

p∗

∫
∂Ω

|v|p∗
dσ −

∫
Ω

F (x, u, v)dx

≤ 1
p
‖v‖p

p − L|v|pp + ξ|Ω|

≤ max
v∈Ek0

(
1
p
‖v‖p

p − L|v|pp
)

+ ξ|Ω|

= max
{t≥0,v∈∂B1(0)∩Ek0}

[
tp
(

1
p
− L|v|pp

)]
+ ξ|Ω|. (4.3)
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Let r = min{∫Ω |v|pdx : v ∈ ∂B1(0) ∩ Ek0}. By taking L ≥ 1
pr , we have

1
p
− L|v|pp ≤ 1

p
− Lr ≤ 0. (4.4)

It follows from (4.3), (4.4) and (H4) that

J(u, v) ≤ ξ|Ω| ≤ min
{

0,
1
N

Sp∗/(p∗−p) − c

(
1

2N

)
|Ω|
}

.

Let β = ξ|Ω|, so we get (c) in (B7). By Lemma 3.4, for any c ∈ [α, β], J(u, v) satisfies the condition of (PS)∗c ,
then (B6) in Theorem 2.7 holds. So according to Theorem 2.7,

cj = inf
i∞(A)≥j

sup
z∈A

f(u), −k0 + 1 ≤ j ≤ −1,

are critical values of J , α ≤ c−k0+1 ≤ · · · ≤ c−1 ≤ β < 0 and J has at least k0 − 1 pairs critical points. �
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