We study the stabilization of global solutions of the Kawahara (K) equation in a bounded interval, under the effect of a localized damping mechanism. The Kawahara equation is a model for small amplitude long waves. Using multiplier techniques and compactness arguments we prove the exponential decay of the solutions of the (K) model. The proof requires of a unique continuation theorem and the smoothing effect of the (K) equation on the real line, which are proved in this work.
Mots clés : Kawahara equation, stabilization, energy decay, localized damping
@article{COCV_2011__17_1_102_0, author = {Vasconcellos, Carlos F. and da Silva, Patricia N.}, title = {Stabilization of the {Kawahara} equation with localized damping}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {102--116}, publisher = {EDP-Sciences}, volume = {17}, number = {1}, year = {2011}, doi = {10.1051/cocv/2009041}, mrnumber = {2775188}, zbl = {1210.35215}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2009041/} }
TY - JOUR AU - Vasconcellos, Carlos F. AU - da Silva, Patricia N. TI - Stabilization of the Kawahara equation with localized damping JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2011 SP - 102 EP - 116 VL - 17 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2009041/ DO - 10.1051/cocv/2009041 LA - en ID - COCV_2011__17_1_102_0 ER -
%0 Journal Article %A Vasconcellos, Carlos F. %A da Silva, Patricia N. %T Stabilization of the Kawahara equation with localized damping %J ESAIM: Control, Optimisation and Calculus of Variations %D 2011 %P 102-116 %V 17 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2009041/ %R 10.1051/cocv/2009041 %G en %F COCV_2011__17_1_102_0
Vasconcellos, Carlos F.; da Silva, Patricia N. Stabilization of the Kawahara equation with localized damping. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 1, pp. 102-116. doi : 10.1051/cocv/2009041. http://www.numdam.org/articles/10.1051/cocv/2009041/
[1] Model equations for long waves in nonlinear dispersive systems. Phil. Trans. R. Soc. A 272 (1972) 47-78. | MR | Zbl
, and ,[2] Solitary and periodic solutions for nonlinear nonintegrable equations. Stud. Appl. Math. 99 (1997) 1-24. | MR | Zbl
and ,[3] On the Benney-Lin and Kawahara equations. J. Math. Anal. Appl. 211 (1997) 131-152. | MR | Zbl
and ,[4] Comparison of model equations for small-amplitude long waves. Nonlinear Anal. 38 (1999) 625-647. | MR | Zbl
and ,[5] Linear instability of solitary wave solutions of the Kawahara equation and its generalizations. SIAM J. Math. Anal. 33 (2002) 1356-1378. | MR | Zbl
and ,[6] Exact boundary controllability of a nonlinear KdV equation with critical lenghts. J. Eur. Math. Soc. 6 (2004) 367-398. | MR | Zbl
and ,[7] Kawahara equation in a bounded domain. Discrete Continuous Dyn. Syst., Ser. B 10 (2008) 783-799. | MR | Zbl
and ,[8] Water waves. Kagaku 40 (1970) 401-408 [in Japanese].
,[9] Weak non-linear hydromagnetic waves in a cold collision-free plasma. J. Phys. Soc. Japan 26 (1969) 1305-1318.
and ,[10] Oscillatory solitary waves in dispersive media. J. Phys. Soc. Japan 33 (1972) 260-264.
,[11] On the controllability and stabilization of the linearized Benjamin-Ono equation. ESAIM: COCV 11 (2005) 204-218. | Numdam | MR | Zbl
and ,[12] On the exponential decay of the critical generalized Korteweg-de Vries with localized damping. Proc. Amer. Math. Soc. 135 (2007) 1515-1522. | MR | Zbl
and ,[13] Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, Tome 1: Contrôlabilité Exacte, in RMA 8, Masson, Paris, France (1988). | MR | Zbl
,[14] On the uniform decay for the Korteweg-de Vries equation with weak damping. Math. Meth. Appl. Sci. 30 (2007) 1419-1435. | MR | Zbl
, and ,[15] Stabilization of the Korteweg-de Vries equation with localized damping. Quarterly Applied Math. LX (2002) 111-129. | MR | Zbl
, and ,[16] Unique continuation and decay for the Korteweg-de Vries equation with localized damping. ESAIM: COCV 11 (2005) 473-486. | Numdam | MR | Zbl
,[17] Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, New York, USA (1983). | MR | Zbl
,[18] Exponential decay of solutions to hyperbolic equations in bounded domains. Indiana Univ. Math. J. 24 (1974) 79-86. | MR | Zbl
and ,[19] Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain. ESAIM: COCV 2 (1997) 33-55. | Numdam | MR | Zbl
,[20] Global stabilization of the generalized Korteweg-de Vries equation posed on a finite domain. SIAM J. Contr. Opt. 45 (2006) 927-956. | MR | Zbl
and ,[21] Exact controllability and stabilization of the Korteweg-de Vries equation. Trans. Amer. Math. Soc. 348 (1996) 1515-1522. | MR | Zbl
and ,[22] Unique continuation for some evolution equations. J. Diff. Equation 66 (1987) 118-139. | MR | Zbl
and ,[23] The rigorous approximation of long-wavelength capillary-gravity waves. Arch. Ration. Mech. Anal. 162 (2002) 247-285. | MR | Zbl
and ,[24] Approximate equations for long nonlinear waves on a viscous fluid. J. Phys. Soc. Japan 44 (1978) 663-666. | MR
and ,[25] Stabilization of the linear Kawahara equation with localized damping. Asymptotic Anal. 58 (2008) 229-252. | MR | Zbl
and ,[26] Erratum of the Stabilization of the linear Kawahara equation with localized damping. Asymptotic Anal. (to appear). | Zbl
and ,[27] Contrôlabilité Exacte de Quelques Modèles de Plaques en un Temps Arbitrairement Petit. Appendix in [13], 165-191.
,[28] Exponential decay for the semilinear wave equation with locally distribued damping. Comm. Partial Diff. Eq. 15 (1990) 205-235. | MR | Zbl
,Cité par Sources :