On construit des solutions quasi-périodiques en temps pour l'équation des ondes non linéaire sur le tore en dimension quelconque. Tous les résultats précédents se limitent au cercle. Cet article étend la méthode développée pour le cas limite elliptique dans [12] au cas hyperbolique. Le nouvel ingrédient est une propriété diophantienne des nombres algébriques.
We construct time quasi-periodic solutions to nonlinear wave equations on the torus in arbitrary dimensions. All previously known results (in the case of zero or a multiplicative potential) seem to be limited to the circle. This extends the method developed in the limit-elliptic setting in [12] to the hyperbolic setting. The additional ingredient is a Diophantine property of algebraic numbers.
Accepté le :
Publié le :
@article{CRMATH_2015__353_7_601_0, author = {Wang, Wei-Min}, title = {Quasi-periodic solutions for nonlinear wave equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {601--604}, publisher = {Elsevier}, volume = {353}, number = {7}, year = {2015}, doi = {10.1016/j.crma.2015.04.014}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2015.04.014/} }
TY - JOUR AU - Wang, Wei-Min TI - Quasi-periodic solutions for nonlinear wave equations JO - Comptes Rendus. Mathématique PY - 2015 SP - 601 EP - 604 VL - 353 IS - 7 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2015.04.014/ DO - 10.1016/j.crma.2015.04.014 LA - en ID - CRMATH_2015__353_7_601_0 ER -
Wang, Wei-Min. Quasi-periodic solutions for nonlinear wave equations. Comptes Rendus. Mathématique, Tome 353 (2015) no. 7, pp. 601-604. doi : 10.1016/j.crma.2015.04.014. http://www.numdam.org/articles/10.1016/j.crma.2015.04.014/
[1] Sobolev quasi-periodic solutions of multidimensionalal wave equations with a multiplicative potential, Nonlinearity, Volume 25 (2012), pp. 2579-2613
[2] An abstract Nash–Moser theorem and quasi-periodic solutions for NLW and NLS on compact Lie groups and homogeneous manifolds, Commun. Math. Phys., Volume 334 (2015), pp. 1413-1454
[3] Construction of periodic solutions of nonlinear wave equations in higher dimensions, Geom. Funct. Anal., Volume 5 (1995), pp. 363-439
[4] Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations, Geom. Funct. Anal., Volume 6 (1996), pp. 629-639
[5] Green's Function Estimates for Latttice Schrödinger Operators and Applications, Ann. of Math. Studies, vol. 158, Princeton University Press, 2005
[6] KAM tori for 1D nonlinear wave equations with periodic boundary conditions, Commun. Math. Phys., Volume 211 (2000), pp. 497-525
[7] Lectures on spectral theory of elliptic operators, Duke Math. J., Volume 44 (1977), pp. 485-517
[8] Hamiltonian perturbation of infinite-dimensional linear systems with imaginary spectrum, Funkc. Anal. Prilozh., Volume 21 (1987), pp. 22-37
[9] Quasi-periodic solutions for a nonlinear wave equation, Comment. Math. Helv., Volume 71 (1996), pp. 269-296
[10] Norm form equations, Ann. Math., Volume 96 (1972), pp. 526-551
[11] W.-M. Wang, Quasi-periodic solutions for nonlinear wave equations, Preprint (2014), 50 p.
[12] Energy supercritical nonlinear Schrödinger equations: quasi-periodic solutions (2014, submitted for publication, 61 p) | arXiv
[13] Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Commun. Math. Phys., Volume 127 (1990), pp. 479-528
Cité par Sources :