[De la dynamique des sphères dures aux équations de Stokes–Fourier : Une analyse
Les équations de Stokes–Fourier sont obtenues, en dimension 2, comme dynamique limite d'un système de N sphères dures de diamètre ε quand
We derive the Stokes–Fourier equations in dimension 2 as the limiting dynamics of a system of N hard spheres of diameter ε when
Accepté le :
Publié le :
@article{CRMATH_2015__353_7_623_0, author = {Bodineau, Thierry and Gallagher, Isabelle and Saint-Raymond, Laure}, title = {From hard spheres dynamics to the {Stokes{\textendash}Fourier} equations: {An} $ {L}^{2}$ analysis of the {Boltzmann{\textendash}Grad} limit}, journal = {Comptes Rendus. Math\'ematique}, pages = {623--627}, publisher = {Elsevier}, volume = {353}, number = {7}, year = {2015}, doi = {10.1016/j.crma.2015.04.013}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2015.04.013/} }
TY - JOUR AU - Bodineau, Thierry AU - Gallagher, Isabelle AU - Saint-Raymond, Laure TI - From hard spheres dynamics to the Stokes–Fourier equations: An $ {L}^{2}$ analysis of the Boltzmann–Grad limit JO - Comptes Rendus. Mathématique PY - 2015 SP - 623 EP - 627 VL - 353 IS - 7 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2015.04.013/ DO - 10.1016/j.crma.2015.04.013 LA - en ID - CRMATH_2015__353_7_623_0 ER -
%0 Journal Article %A Bodineau, Thierry %A Gallagher, Isabelle %A Saint-Raymond, Laure %T From hard spheres dynamics to the Stokes–Fourier equations: An $ {L}^{2}$ analysis of the Boltzmann–Grad limit %J Comptes Rendus. Mathématique %D 2015 %P 623-627 %V 353 %N 7 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2015.04.013/ %R 10.1016/j.crma.2015.04.013 %G en %F CRMATH_2015__353_7_623_0
Bodineau, Thierry; Gallagher, Isabelle; Saint-Raymond, Laure. From hard spheres dynamics to the Stokes–Fourier equations: An $ {L}^{2}$ analysis of the Boltzmann–Grad limit. Comptes Rendus. Mathématique, Tome 353 (2015) no. 7, pp. 623-627. doi : 10.1016/j.crma.2015.04.013. https://www.numdam.org/articles/10.1016/j.crma.2015.04.013/
[1] Sur les limites asymptotiques de la théorie cinétique conduisant à la dynamique des fluides incompressibles, C. R. Acad. Sci. Paris, Ser. I, Volume 309 (1989) no. 11, pp. 727-732
[2] Equilibrium time correlation functions in the low density limit, J. Stat. Phys., Volume 22 (1980), pp. 237-257
[3] The Brownian motion as the limit of a deterministic system of hard-spheres, Invent. Math. (2015), pp. 1-61 (in press) | DOI
[4] T. Bodineau, I. Gallagher, L. Saint-Raymond, From hard spheres dynamics to the Stokes–Fourier equations: an
[5] From Newton to Boltzmann: The Case of Hard-Spheres and Short-Range Potentials, Zurich Lectures in Advanced Mathematics, European Mathematical Society, Zürich, Switzerland, 2014
[6] Time evolution of large classical systems (Moser, J., ed.), Lecture Notes in Physics, vol. 38, Springer Verlag, 1975, pp. 1-111
- Recollisional effects on dissipation of granular gases driven by Gaussian thermostat, The European Physical Journal Plus, Volume 137 (2022) no. 3 | DOI:10.1140/epjp/s13360-022-02436-w
- Mean Field Limit for Stochastic Particle Systems, Active Particles, Volume 1 (2017), p. 379 | DOI:10.1007/978-3-319-49996-3_10
- From Newton’s Law to the Linear Boltzmann Equation Without Cut-Off, Communications in Mathematical Physics, Volume 350 (2017) no. 3, p. 1219 | DOI:10.1007/s00220-016-2821-6
Cité par 3 documents. Sources : Crossref