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We derive the Stokes–Fourier equations in dimension 2 as the limiting dynamics of a 
system of N hard spheres of diameter ε when N → ∞, ε → 0, Nε = α → ∞, using the 
linearized Boltzmann equation as an intermediate step. Our proof is based on the strategy 
of Lanford [6], and on the pruning procedure developed in [3] to improve the convergence 
time. The main novelty here is that uniform a priori estimates come from a L2 bound on 
the initial data, the time propagation of which involves a fine symmetry argument and a 
systematic study of recollisions.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Les équations de Stokes–Fourier sont obtenues, en dimension 2, comme dynamique limite 
d’un système de N sphères dures de diamètre ε quand N → ∞, ε → 0, Nε = α → ∞, en 
utilisant l’équation de Boltzmann linéarisée comme étape intermédiaire. Notre preuve est 
basée sur la stratégie de Lanford [6] et sur la procédure de troncature développée dans [3]
pour améliorer le temps de convergence. La principale nouveauté ici est que les estimations 
a priori uniformes viennent d’une borne L2 sur la donnée initiale, dont la propagation en 
temps repose sur un argument fin de symétrie et une étude systématique des recollisions.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

On s’intéresse à la limite de faible densité pour un gaz de sphères dures de dimension 2 décrit par (1). Si, au temps 
initial, les particules sont indépendantes et identiquement distribuées, le théorème de Lanford montre que le chaos est 
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propagé asymptotiquement quand N → ∞, et que la distribution à une particule est proche de la solution de l’équation 
de Boltzmann non linéaire (2). Néanmoins, ce résultat n’est valable qu’en temps court, typiquement comme O (1/α), où α
est l’inverse du libre parcours moyen. Une idée naturelle pour améliorer ce temps est de considérer de petites fluctuations 
autour de la mesure invariante (3). On considère ici une fluctuation symétrique d’ordre 1/N .

Théorème 0.1 ([4]). Soit f 0
N la donnée initiale définie par (5). On note f N(t) la distribution à N particules à l’instant t (transportée de 

f 0
N par le flot de (1)). Alors

– la distribution à une particule f (1)
N (t, x, v) est proche de la solution de l’équation de Boltzmann linéarisée (4), au sens où elle 

vérifie l’estimation (7) dans la limite N → ∞, ε → 0, Nε = α ;
– la distribution à une particule f (1)

N (ατ , x, v) (remise à l’échelle en temps) converge vers la solution des équations de Stokes–Fourier 
(8) dans la limite N → ∞, ε → 0, Nε = α → ∞ avec α � √

log log log N.

La stratégie de la preuve suit les idées de [6,5,3]. La principale différence vient du fait que l’espace fonctionnel adapté à la 
donnée initiale considérée est de type L2. En utilisant un argument de symétrie, on montre un développement du type (15)
pour les marginales. Un contrôle fin des recollisions permet alors d’obtenir la continuité des opérateurs de collision et de 
contrôler la croissance des arbres de collision.

1. Introduction and main results

We consider a gas consisting of N hard spheres of diameter ε in a two-dimensional periodic box T2, with positions and 
velocities (xi, vi)1≤i≤N ∈ (T2 × R2)N , the dynamics of which is

dxi

dt
= vi ,

dvi

dt
= 0 as long as |xi(t) − x j(t)| > ε for 1 ≤ i �= j ≤ N , (1)

with specular reflection after a collision. We are interested here in describing the macroscopic behavior in the low-density 
limit, i.e. as N → ∞, ε → 0, Nε = α with α = O (1) or converging very slowly to ∞.

If at initial time the particles are “independent” and identically distributed, it has been known since the work of Lan-
ford [6] that chaos is propagated (asymptotically for N >> 1) and that the one-particle distribution is well approximated by 
the solution to the nonlinear Boltzmann equation:

(∂t + v · ∇x) f (t, x, v) = α

∫ (
f (t, x, v∗) f (t, x, v∗

1) − f (t, x, v) f (t, x, v1)
)(

(v1 − v) · ν
)

+dνdv1 ,

with v∗ := v − (v − v1) · ν ν, v∗
1 := v1 + (v − v1) · ν ν . (2)

However, this convergence result holds only for very short times, typically like O (1/α). This is due to the fact that, forgetting 
about signs, the equation essentially looks like ∂t Y = αY 2. Nevertheless, because of compensations between gain and loss 
terms, the Boltzmann equation admits global equilibria of the type Mβ(v) := β

2π exp(−β
|v|2

2 ), which are actually the limiting 
form (in the low density limit) of the invariant Gibbs measures for the N particle system:

MN,β(x1, v1, . . . , xN , v N) := 1

ZN
1DN (x1, . . . , xN)

(
β

2π

)N

exp(−β

N∑
i=1

|vi|2) , (3)

where DN := {
(x1, . . . , xN ) ∈ T2N / |xi − x j | > ε , ∀i �= j

}
, and ZN is the partition function.

A natural way to improve the lifespan of solutions is to consider small fluctuations around such an equilibrium. In [3], the 
motion of a tagged particle was analyzed, and the initial data was a perturbation of order 1 of the stationary state, namely 
a perturbation of this single tagged particle. The Boltzmann–Grad limit led to the linear Boltzmann equation. Contrary to 
that equation, the linearized Boltzmann equation

(∂t + v · ∇x)gα = −α

∫
Mβ(v1)

(
gα(v) + gα(v1) − gα(v∗) − gα(v∗

1)
)(

(v1 − v) · ν
)

+dνdv1 (4)

describes the response of the whole system to a perturbation. Physically, if the distribution of a tagged particle is initially 
modified, the linearized equation records the impact of this particle on the rest of the system, which will modify by an 
order 1/N the distribution of each of the N − 1 particles in the background. Thus one has to keep track of corrections 
of order 1/N , as opposed to [3], where only the corrections of order 1 were relevant. We rephrase this problem in a 
symmetric way by considering the following initial data: writing zi := (xi, vi) and Z N := (z1, . . . , zN ), we assume there is a 
function gα,0 such that gα,0 belongs to L∞ ∩ Lip and

f N,0(Z N) = MN,β(Z N)

N∑
gα,0(zi) with

∫
Mβ gα,0(z)dz = 0 . (5)
i=1
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The perturbation is now of order N and we are interested in the evolution of the first marginal. Using that gα,0 is mean 
free, and the bound Z−1

N ≤ exp(Cα2) (valid in dimension 2 only), we then get

f N,0(Z N) ≤ N‖gα,0‖∞MN,β(Z N),

∫ f 2
N,0

MN,β

(Z N)dZ N ≤ N exp(Cα2)

∫
Mβ g2

α,0(z)dz . (6)

We shall take advantage of the invariance of the Gibbs measure MN,β to obtain a priori estimates that hold for all times, 
and enable us to prove the following result.

Theorem 1.1 ([4]). Consider the initial distribution f 0
N defined in (5). The one-particle distribution f (1)

N (t, z) is close to Mβ(v)gα(t, z), 
where gα(t, z) is the solution of the linearized Boltzmann equation (4) with initial data gα,0(z). More precisely, there exist a continuous 
function ω with ω(0) = 0 and a non-negative constant C such that for all t > 0 and all α > 1, in the limit N → ∞, Nεα−1 = 1, one 
has

∥∥ f (1)
N (t, z) − Mβ(v)gα(t, z)

∥∥
L1(T2×R2)

≤ ω

(
t3 eCα2

log log N

)
· (7)

Note that a convergence to the linearized Boltzmann equation was first obtained in [2], but only for short times. Once 
Theorem 1.1 is known, it is possible to take the limit α → ∞ while conserving a small error on the right-hand side of (7). 
Rescaling time as t = ατ and taking limits as α → ∞, we get the following diffusive approximation by the Stokes–Fourier 
dynamics.

Corollary 1.2 ([4]). Consider N hard spheres on the space T2 × R2 , initially distributed according to f 0
N defined in (5). Assume that the 

initial data is well prepared in the sense that g0, the limit in L2(Mβdxdv) of gα,0 when α → ∞, satisfies

g0(x, v) = u0(x) · v + |v|2 − 4

2
θ0(x) with u0, θ0 in L∞, ∇x · u0 = 0 .

Then as N → ∞, Nε = α → ∞ slower than
√

log log log N, the distribution f (1)
N (ατ , x, v) remains close in L1-norm to Mβ g where 

g(τ , x, v) := u(τ , x) · v + |v|2 − 4

2
θ(τ , x) and (u, θ) satisfies the Stokes–Fourier equations with initial data (u0, θ0):

∂τ u − νβ�xu = 0 , ∇x · u = 0 , ∂τ θ − κβ�xθ = 0 (8)

with

νβ :=
∫

φL−1
β φMβ(v)dv with φ(v) = (v ⊗ v − |v|2

2
Id) ,

κβ := 1

2

∫
ψL−1

β ψMβ(v)dv with ψ(v) = v

( |v|2
2

− 2

)
.

Remark 1. For general not well prepared initial data, the asymptotics is also well known (see [1]). It is a superposition of

– the mean motion described by the Stokes–Fourier equation;
– fast oscillations governed by the acoustic operator on time scale O (α−1);
– an initial relaxation layer of size O (α−2) if the initial profile is not a fluctuation of a local infinitesimal Maxwellian.

2. General strategy

The proof of Theorem 1.1 is built on the strategy of Lanford [6] and the improvements in [5]. The Liouville equation can be 
rewritten as the BBGKY hierarchy that describes the evolution of the marginals

∀s ≤ N, ∂t f (s)
N +

s∑
i=1

vi · ∇xi f (s)
N = αCs,s+1 f (s+1)

N on Ds × R2s , (9)

where the collision operator is defined by

(
Cs,s+1 f (s+1)

N

)
(Zs) : = (N − s)ε

α

( s∑
i=1

∫
f (s+1)

N (. . . , xi, v∗
i , . . . , xi + εν, v∗

s+1)
(
(vs+1 − vi) · ν

)
+dν dvs+1

−
s∑∫

f (s+1)
N (. . . , xi, vi, . . . , xi + εν, vs+1)

(
(vs+1 − vi) · ν

)
−dν dvs+1

)
.

i=1
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Understanding the limiting behavior of (9) in the Boltzmann–Grad scaling Nε = α reduces to proving the convergence of 
the BBGKY hierarchy to the limiting Boltzmann hierarchy.
The first step to prove the convergence is to rewrite the evolution of the first marginal f (1)

N by the iterated Duhamel formula

f (1)
N (t) =

N−1∑
n=0

Q 1,n+1(t) f (n+1)
N,0 , (10)

where Q 1,n+1 encodes n collisions and Sk is the transport operator with exclusion for k particles

Q 1,n+1(t) := αn

t∫
0

t2∫
0

. . .

tn−1∫
0

S1(t − t2)C1,2S2(t2 − t3)C2,3 . . . S1+n(t1+n)dt2 . . . dtn . (11)

This operator can be interpreted as a sum over trees in which each collision corresponds to a creation of a new particle. The 
main difference between the BBGKY hierarchy and the limiting Boltzmann hierarchy is that the free transport on T2s does 
not coincide with the transport S on Ds . We will use the word recollision when two particles encounter in flow S.

To prove the convergence of the series (10) in the Boltzmann–Grad scaling Nα−1 ε = 1, the L∞-functional setting was 
used in [6]. The collision operator is bounded in weighted L∞ spaces (with exponential decay in v) denoted by L̃∞:∥∥∥∥∥∥

t∫
0

dt1Ss(t − t1)Cs,s+1Ss+1(t1)hs+1

∥∥∥∥∥∥
L̃∞

≤ C st‖hs+1‖L̃∞ . (12)

For general initial data, a Cauchy–Kowalewski argument can be implemented to obtain the convergence of the series ex-
pansion for short times [6,5]. Thus, only the first terms of the series are relevant in the limit behavior of (10). They are 
interpreted as collision trees with a small number of collisions and they converge termwise. Indeed, one can show by a 
geometric argument that recollisions occur for a small set of initial configurations and outside this set, the transport S with 
exclusion coincides with the free transport.

The main difficulty to generalize this approach to a longer time range is a control of the large collision trees. This was 
achieved in [3], for a perturbation of the stationary measure such that the initial data satisfies f 0

N ≤ CMN,β . Under this 
assumption, the convergence time can be extended, since we have uniform, global in time a priori L̃∞ estimates for all 
marginals thanks to the maximum principle: for all t , f (s)

N (t) ≤ CM(s)
N,β . The analysis distinguishes between collision trees 

with super-exponential growth and collision trees with sub-exponential growth:

– for collision trees with sub-exponential growth, the geometric argument can be applied directly to control the difference 
between the BBGKY and the Boltzmann dynamics;

– the main novelty in [3] is to prove that the contribution of super-exponential trees is negligible. This is done thanks to a 
pruning procedure, splitting the macroscopic time interval [0, t] in small intervals of size h, and stopping the backwards 
expansion of collision trees on the first interval k, for which the branching process shoots up (meaning that the tree 
has more than 2k branching points). Note that this can be done because we know a priori that f (s)

N (t − kh) ≤ CM(s)
N,β .

The a priori estimate (6) is much worse than in [3]: f N,0 ≤ CNMN,β and the divergence in N prevents us from applying 
the L∞ strategy explained above; the difficult part of the proof is the control of the large collision trees. The idea is to 
exploit the better L2 estimate (6) and to bound the collision operators Cs,s+1 in L2. More precisely, the L2 estimate will be 
crucial for trees with at most one recollision and the L∞ estimate will be used for trees with more than one recollision.

3. L2-estimates: control of super exponential trees with at most one recollision

The operator Cs,s+1 is ill-defined in L2 (as it acts on hypersurfaces) and it has to be combined with the transport 
operator to recover the missing dimension (see [5] Section 5). Geometrically the integral 

∫ t
0 dt1Ss(t − t1)C−

s,s+1Ss+1(t1)hs+1
can be interpreted as a configuration Zs evolving backward to which a particle is added with velocity vs+1 and deflection 
angle νs+1. Consider the corresponding mapping

(Zs, νs+1, vs+1, τ ) �→ Zs+1 = �s+1(τ , Xs, V s, xi + ενs+1, vs+1), (13)

where �s+1 denotes the transport with exclusion. This mapping preserves the measure, but it is not a bijection due to 
possible recollisions arising in the flow. If no recollision occurs, then the transport S coincides with the free transport S0

and, using the change of variables (13), one can prove that for weighted L2 norms denoted by L̃2∥∥∥∥∥∥
t∫

dτCs,s+1S0
s+1(−τ )hs+1

∥∥∥∥∥∥ ≤ C

√
s t

ε
‖hs+1‖L̃2 . (14)
0 L̃2
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In the case of C+
s,s+1, a change of variables involving the scattering operator leads to the same bound. If a single recollision 

occurs, the mapping (13) is quasi-bijective and a bound similar to (14) still holds. For configurations leading to multiple 
recollisions, a different strategy based on L∞ estimates will be explained in Section 4. At first sight, the L2-norm (14)
of Cs,s+1 is worse than the L∞-norm (12), as it diverges as ε−1/2. Thus is cannot be used directly to control f (s)

N . To 
overcome this problem, the key idea is to use the exchangeability to decompose the marginals in terms of symmetric 
functions g(i)

N ∈ L̃2

f (s)
N (t, Zs) = M⊗s

β

s∑
i=1

∑
σ∈Si

s

g(i)
N (t, Zσ ) with ‖g(i)

N ‖2
L̃2 ≤ CN exp(Cα2)

C i
N

‖gα,0‖2
L̃2 , (15)

where Si
s denotes the set of all parts of {1, . . . , s} with i elements. Intuitively, the structure of the initial data (5) should be 

preserved in the leading term of the distribution:

f N(t, Z N) � MN,β(Z N)

N∑
i=1

g(1)(t, zi) with
∫

Mβ g(1)(t, z)dz = 0 .

However the dynamics induce weak correlations between the particles and thus corrections to the measure. The decomposi-
tion (15) encodes the fact that the higher-order correlations decrease in L2-norm according to the number of particles. This 
is a step towards proving local equilibrium, but these estimates are not strong enough to deduce directly the propagation 
of chaos. The measure decomposition (15) is proved by combining the a priori estimate (6) and the exchangeability of the 
variables.

To evaluate the operator Q 1,s+1 on a function of the form M⊗s
β g(i)

N (t, Zσ ) (with i ≤ s < N/2), the idea is to iterate i − 1

times the L2-bound (14) as s + 1 − i coordinates of this function are distributed according to the stationary state and can 
be analyzed in a simpler way. Thus the idea is to balance the divergence in

√
εi−1 by the norm of g(i)

N (15), which vanishes 
as 1√

Ni−1
. Compared to the L∞ framework, extra care is required to bound the L2 contribution of the large trees.

4. L∞-estimates: control of super exponential trees with more than one recollision

Consider a collision tree with s particles and total energy bounded by R ∼ | logε|. When particle s + 1 is added to the 
collision tree, then a small set of velocities may lead to a recollision with one of the other particles in the tree. If all the 
particles are far apart, the occurrence of a recollision before a time τ has a cost of order τ ε. However, as particles might get 
closer to each other, the cost of a recollision is slightly larger and cannot compensate the divergence in N = ε−1 of the L∞
estimate of f N(t). Thus the cost of a second recollision has to be estimated. If the dynamics has at least two recollisions, 
then one can identify at most four collision operators encoding these recollisions and for which the constraints on the set 
of parameters (collision times, impact parameter and velocity of the additional particles) lead to a cost O (ε). Note that this 
estimate is optimal when the two recollisions follow each other.

This additional smallness balances the divergence of the L∞ norm and allows us to use L∞ bounds as in [3] to control 
the super exponential trees with at least two recollisions.
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